已知函数f(x)=ax^3-3x在x=1上取得极值
①.求函数f(x)的极大值和极小值。②.过点(0,16)作曲线y=f(x)的切线。求此切线方程。...
①.求函数f(x)的极大值和极小值。
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程。 展开
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程。 展开
展开全部
已知函数f(x)=ax^3-3x在x=1上取得极值
①.求函数f(x)的极大值和极小值。
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程
①. 令 f ' (x) = 3ax² - 3 = 3(ax² - 1) = 0
ax² = 1
x = ± 1/√a)
根据已知,a = 1, 所以有两个极值点 x = ± 1
原函数为 f(x) = ax^3 - 3x f ' (x) = 3(x² - 1) ------ ⑴
当 x 介于±1之间时,f' (x) < 0 ,单调减小;
其余部分都 f' (x) > 0 ,单调增加;
所以,x = -1是极大值 x = +1是极小值
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程。
设此切线方程为 y = k(x - 0) + 16 -------已经考虑了切线经过点(0,16)
切点处的斜率k 就是一阶导数在切点的数值
代入⑴ 式: y ' (x = 0) = 3(x² - 1) = - 3 -------这就是 k
所以切线方程为 y = k(x - 0) + 16 = -3(x - 0) + 16 = 16 - 3x
①.求函数f(x)的极大值和极小值。
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程
①. 令 f ' (x) = 3ax² - 3 = 3(ax² - 1) = 0
ax² = 1
x = ± 1/√a)
根据已知,a = 1, 所以有两个极值点 x = ± 1
原函数为 f(x) = ax^3 - 3x f ' (x) = 3(x² - 1) ------ ⑴
当 x 介于±1之间时,f' (x) < 0 ,单调减小;
其余部分都 f' (x) > 0 ,单调增加;
所以,x = -1是极大值 x = +1是极小值
②.过点(0,16)作曲线y=f(x)的切线。求此切线方程。
设此切线方程为 y = k(x - 0) + 16 -------已经考虑了切线经过点(0,16)
切点处的斜率k 就是一阶导数在切点的数值
代入⑴ 式: y ' (x = 0) = 3(x² - 1) = - 3 -------这就是 k
所以切线方程为 y = k(x - 0) + 16 = -3(x - 0) + 16 = 16 - 3x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询