设函数f(x)=x(x-1)(x-a),(a>1),求导数f′(x)
设函数f(x)=x(x-1)(x-a),(a>1),求导数f′(x),并证明f(x)有两个不同极值点x1,x2;若不等式f(x1)+f(x2)≤0,求a的取值范围...
设函数f(x)=x(x-1)(x-a),(a>1),求导数f′(x),并证明f(x)有两个不同极值点x1,x2;若不等式f(x1)+f(x2)≤0,求a的取值范围
展开
3个回答
展开全部
f(x)=x^3-(a+1)x^2+ax,
f'(x)=3x^2-2(a+1)x+a
f''(x)=6x-2(a+1);
从f'(x)=0,求得驻点x=0,x=1,x=a;后面的就证明f'(x),f''(x)与0的大小关系,确定哪两个才是极值点;
最后解不等式。
f'(x)=3x^2-2(a+1)x+a
f''(x)=6x-2(a+1);
从f'(x)=0,求得驻点x=0,x=1,x=a;后面的就证明f'(x),f''(x)与0的大小关系,确定哪两个才是极值点;
最后解不等式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-06-08
展开全部
解:f′(x)=(2x-1)(x-a)+x(x-1)=3x^2-(2a+2)x+a
当f′(x)=0时,[-(2a+2)]^2-12a=4a(a-1)+4>4
故f′(x)=0有两个不相等的实数根,所以f(x)有两个不同极值点x1,x2。
当f′(x)=0时,[-(2a+2)]^2-12a=4a(a-1)+4>4
故f′(x)=0有两个不相等的实数根,所以f(x)有两个不同极值点x1,x2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询