证明:ln(1+1*2)+ln(1+2*3)+……+ln[1+n(n+1)]>2n-3(n属于N*)

百度网友e68d25296
2011-06-08 · TA获得超过513个赞
知道小有建树答主
回答量:104
采纳率:0%
帮助的人:122万
展开全部
用数学归纳法证明就可以了
证明:当 n=1时,ln(1+1*2)=ln(3)>-1,成立;
当 n=2时,ln(3)+ln(7)=ln(21)>1,成立;
假设 当 n=k时,ln(1+1*2)+ln(1+2*3)+...+ln(1+n(n+1))>2*n-3 成立
两边+ln(1+(n+1)(n+2)),即:
ln(1+1*2)+...+ ln(1+n(n+1))+ln(1+(n+1)(n+2))>2*n-3+ln(1+(n+1)(n+2))
>2*n-3+ln(n+1)^2=2*n-3+2ln(n+1)>2*n-3+2=2*(n+1)-3
所以,n=k+1时也成立,得证!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式