在△abc中 角a b c所对的边分别为a b c 若sinA sinB sinC=根号3/2(sin^2A+sin^2B-sin^2C)
2个回答
展开全部
(1) sinA sinB sinC=根号3/2(sin^2A+sin^2B-sin^2C)
sinC=(√3/2)(sin^2A+sin^2B-sin^2C)/sinAsinB
由正弦定理,右边转为边的形式
sinC=√3(a^2+b^2-c^2)/(2ab)
由余弦定理知,sinC=√3cosC
tanC=√3
C=π/3
(2) B=π-A-C=2π/3-A
y=sinA+sinB=sinA+sin(2π/3-A)
=2sin(π/3)cos(π/3-A)
=√3cos(π/3-A)
=√3sin(A+π/6)
因π/4≤A<2π/3 5π/12≤A+π/6<5π/6
所以值域y∈(√3/2, √3]
sinC=(√3/2)(sin^2A+sin^2B-sin^2C)/sinAsinB
由正弦定理,右边转为边的形式
sinC=√3(a^2+b^2-c^2)/(2ab)
由余弦定理知,sinC=√3cosC
tanC=√3
C=π/3
(2) B=π-A-C=2π/3-A
y=sinA+sinB=sinA+sin(2π/3-A)
=2sin(π/3)cos(π/3-A)
=√3cos(π/3-A)
=√3sin(A+π/6)
因π/4≤A<2π/3 5π/12≤A+π/6<5π/6
所以值域y∈(√3/2, √3]
追问
sinC=√3(a^2+b^2-c^2)/(2ab)
这一步不是很懂,角化边不是会出现2R的吗
追答
正弦定理a/sinA=b/sinB=c/sinC=2R
a=2RsinA b=2RsinB c=2RsinC
代入后,分子分母约去了
展开全部
(sinA)^2+(sinB)^2+(sinC)^2+2sinAsinB+2sinBsinA+2sinCsinA
=3(sinA)^2+3(sinB)^2+3(sinC)^2
2(sinA)^2+2(sinB)^2+2(sinC)^2-2sinAsinB-2sinBsinA-2sinCsinA=0
[(sinA)^2+(sinB)^2-2sinAsinB]+[(sinB)^2+(sinC)^2-2sinBsinC]+[(sinC)^2+(sinA)^2-2sinCsinA]=0
(sinA-sinB)^2+(sinB-sinC)^2+(sinC-sinA)^2=0
∴sinA=sinB=sinC
∴∠A=∠B=∠C
等边三角形
=3(sinA)^2+3(sinB)^2+3(sinC)^2
2(sinA)^2+2(sinB)^2+2(sinC)^2-2sinAsinB-2sinBsinA-2sinCsinA=0
[(sinA)^2+(sinB)^2-2sinAsinB]+[(sinB)^2+(sinC)^2-2sinBsinC]+[(sinC)^2+(sinA)^2-2sinCsinA]=0
(sinA-sinB)^2+(sinB-sinC)^2+(sinC-sinA)^2=0
∴sinA=sinB=sinC
∴∠A=∠B=∠C
等边三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询