高中数学圆的方程问题求解、
过点A(0,1)且斜率为k的直线l与圆心C(2,3)、半径为r的圆交于M、N不同两点。当r=1时候,求实数k的取值范围??...
过点A(0,1)且斜率为k的直线l与圆心C(2,3)、半径为r的圆交于M、N不同两点。
当r=1时候,求实数k的取值范围?? 展开
当r=1时候,求实数k的取值范围?? 展开
展开全部
方法一:(数形结合)设直线方程为y=kx+1,化为一般式,即kx-y+1=0.
由于直线与圆交于M、N不同两点,故K必在直线与圆相切时的两个K值之间,于是:
由圆心C(2,3)到直线kx-y+1=0的距离===半径得:
d=|2k-3+1|/√1+k^2=1解得k=4+√7/3或k=4-√7/3。
所以k 的范围是(4-√7/3,4+√7/3)。
方法二:(判别式法)将y=kx+1带入圆的方程(x-1)^2+(y-3)^2=1中得一个关于x的二次方程,
然后用判别式>0即可。
由于直线与圆交于M、N不同两点,故K必在直线与圆相切时的两个K值之间,于是:
由圆心C(2,3)到直线kx-y+1=0的距离===半径得:
d=|2k-3+1|/√1+k^2=1解得k=4+√7/3或k=4-√7/3。
所以k 的范围是(4-√7/3,4+√7/3)。
方法二:(判别式法)将y=kx+1带入圆的方程(x-1)^2+(y-3)^2=1中得一个关于x的二次方程,
然后用判别式>0即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这题用图解反而不好解!!!
法一:
设直线y-1=kx,即:y=kx+1
圆C:(x-2)²+(y-3)²=1
联立:
(x-2)²+(kx+1-3)²=1
(k²+1)x²-4(k+1)x+7=0
△=16(k+1)²-28(k²+1)>0
3k²-8k+3<0
(4-√7)/3<k<(4+√7)/3
法二:
设直线y-1=kx,即kx-y+1=0
圆心到直线的距离
d=|2k-3+1|/√(k²+1)<1
4(k-1)²<k²+1
3k²-8k+3<0
(4-√7)/3<k<(4+√7)/3
法一:
设直线y-1=kx,即:y=kx+1
圆C:(x-2)²+(y-3)²=1
联立:
(x-2)²+(kx+1-3)²=1
(k²+1)x²-4(k+1)x+7=0
△=16(k+1)²-28(k²+1)>0
3k²-8k+3<0
(4-√7)/3<k<(4+√7)/3
法二:
设直线y-1=kx,即kx-y+1=0
圆心到直线的距离
d=|2k-3+1|/√(k²+1)<1
4(k-1)²<k²+1
3k²-8k+3<0
(4-√7)/3<k<(4+√7)/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
题呢?
直线和圆相交,圆心到直线的距离d<r
设直线方程 y=kx+1
d=|2k-2|/√(1+k^2)<1
|2k-2|<√(1+k^2) 平方
4k^2-8k+4<k^2-1
3k^2-8k+5=0
-5/3<k<1
直线和圆相交,圆心到直线的距离d<r
设直线方程 y=kx+1
d=|2k-2|/√(1+k^2)<1
|2k-2|<√(1+k^2) 平方
4k^2-8k+4<k^2-1
3k^2-8k+5=0
-5/3<k<1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
联立y=kx+1和(x-2)^2+(y-3)^2=1,让判别式大于零
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询