如图,四边形ABCD中,∠A=90°,∠ABC与∠ADC互补,且AB=AD
1、求∠C的度数。2、若BC>CD,请在图上画出一条线段,把四边形ABCD重新分成2部分,是的这两部分能够重新拼成一个正方形,并说明理由。3、若CD=6,BC=8,S四边...
1、求∠C的度数。
2、若BC>CD,请在图上画出一条线段,把四边形ABCD重新分成2部分,是的这两部分能够重新拼成一个正方形,并说明理由。
3、若CD=6,BC=8,S四边形ABCD=49,求AB的值 展开
2、若BC>CD,请在图上画出一条线段,把四边形ABCD重新分成2部分,是的这两部分能够重新拼成一个正方形,并说明理由。
3、若CD=6,BC=8,S四边形ABCD=49,求AB的值 展开
展开全部
解:1.四边形ABCD中,∠A+∠ABC+∠C+∠ADC=360°
因为∠A=90°,且∠ABC与∠ADC互补,即∠ABC+∠ADC=180°
所以:∠C=360°-(∠A+∠ABC+∠ADC)=360°-90°-180°=90°
2.若BC>CD,则过点A作AE⊥BC,垂足为E;作AB′⊥CD,交CD延长线于点B′
则在四边形AECB′中,∠AEC=∠C=∠AB′C=90°
所以四边形AECB′是矩形
则:∠EAB′=90°
又:∠EAB′=∠EAD+∠DAB′=90°
∠A=∠EAD+∠EAB=90°
所以:∠DAB′=∠EAB
因为:AB=AD
所以易证得:Rt△ABE≌Rt△ADB′
则有:AE=AB′
也就是说矩形AECB′的两条邻边相等
那么矩形AECB′就是一个正方形。
所以如上所作线段AE⊥BC,把四边形ABCD重新分成2部分,将其中一部分即Rt△ABE放置到
Rt△ADB′这个位置,就可重新拼成一个正方形。
3.由第2小题可得:S正方形AECB′=S四边形ABCD=49
则:AE²=49,得:AE=CE=7
又BC=8,则BE=BC-CE=1
所以在Rt△ABE中,由勾股定理得
AB²=AE²+BE²=50
解得:AB=5√2
因为∠A=90°,且∠ABC与∠ADC互补,即∠ABC+∠ADC=180°
所以:∠C=360°-(∠A+∠ABC+∠ADC)=360°-90°-180°=90°
2.若BC>CD,则过点A作AE⊥BC,垂足为E;作AB′⊥CD,交CD延长线于点B′
则在四边形AECB′中,∠AEC=∠C=∠AB′C=90°
所以四边形AECB′是矩形
则:∠EAB′=90°
又:∠EAB′=∠EAD+∠DAB′=90°
∠A=∠EAD+∠EAB=90°
所以:∠DAB′=∠EAB
因为:AB=AD
所以易证得:Rt△ABE≌Rt△ADB′
则有:AE=AB′
也就是说矩形AECB′的两条邻边相等
那么矩形AECB′就是一个正方形。
所以如上所作线段AE⊥BC,把四边形ABCD重新分成2部分,将其中一部分即Rt△ABE放置到
Rt△ADB′这个位置,就可重新拼成一个正方形。
3.由第2小题可得:S正方形AECB′=S四边形ABCD=49
则:AE²=49,得:AE=CE=7
又BC=8,则BE=BC-CE=1
所以在Rt△ABE中,由勾股定理得
AB²=AE²+BE²=50
解得:AB=5√2
参考资料: E
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询