高一数学解三角形(要有详细过程)
1.在三角形ABC中,若tanA/tanB=(2c-b)/b,则A=?2.已知△ABC中,a=x,b=2,B=45°,若该三角形有2解,则x的取值范围是?...
1.在三角形ABC中,若tanA/tanB=(2c-b)/b,则A=?
2.已知△ABC中,a=x,b=2,B=45°,若该三角形有2解,则x的取值范围是? 展开
2.已知△ABC中,a=x,b=2,B=45°,若该三角形有2解,则x的取值范围是? 展开
展开全部
a/sinA=b/sinB=c/sinC=k
tanA/tanB=(2c-b)/b
sinAcosB/(sinBcosA)=2sinC/sinB-1
(sinAcosB+sinBcosA)/(sinBcosA)=2sinC/sinB
sin(A+B)/(sinBcosA)=sin(A+B)/(sinB/2)
cosA=1/2
A=60
2
a=x,b=2 B=45
a/sinA=b/sinB
a/b=sinA/sinB
sinA=(x/2)sin45
sinC=(x/2)sin45+√(1-(x/2)^2) cos45=(√2/2)[(x/2)+√(1-x^2/4)]
或
sinC=(x/2)sin45-√(1-x^2/4)cos45=(√2/2){(x/2)-√(1-x^2/4)]
0<sinC≤1
√2/2[(x/2)-√(1-x^2/4) ≤1
(x/2-√2 )^2 ≤1-x^2/4
x^2/2-√2x+1 ≤0
-√2 ≤x ≤√2
x>0
0<x ≤√2
tanA/tanB=(2c-b)/b
sinAcosB/(sinBcosA)=2sinC/sinB-1
(sinAcosB+sinBcosA)/(sinBcosA)=2sinC/sinB
sin(A+B)/(sinBcosA)=sin(A+B)/(sinB/2)
cosA=1/2
A=60
2
a=x,b=2 B=45
a/sinA=b/sinB
a/b=sinA/sinB
sinA=(x/2)sin45
sinC=(x/2)sin45+√(1-(x/2)^2) cos45=(√2/2)[(x/2)+√(1-x^2/4)]
或
sinC=(x/2)sin45-√(1-x^2/4)cos45=(√2/2){(x/2)-√(1-x^2/4)]
0<sinC≤1
√2/2[(x/2)-√(1-x^2/4) ≤1
(x/2-√2 )^2 ≤1-x^2/4
x^2/2-√2x+1 ≤0
-√2 ≤x ≤√2
x>0
0<x ≤√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询