如图12,分别延长正方形ABCD的边CB和BA,至点E和F,使BE=AF,,连接AE,并延长交DF于点H

(1)求证△ADH~△EDA(2)设正方形边长为a,BE=b,求AH/AE(3)求证:CE^2=AE(AH+HE)... (1)求证△ADH~△EDA
(2)设正方形边长为a,BE=b,求AH/AE
(3)求证:CE^2=AE(AH+HE)
展开
数学新绿洲
2011-06-22 · 初中高中数学解题研习
数学新绿洲
采纳数:13056 获赞数:76575

向TA提问 私信TA
展开全部
第一小题应该是证明:△ADH~△FDA成立
(1)证明:在Rt△ABE与Rt△DAF中,有:
AB=DA,∠ABE=∠DAF=90°,BE=AF
所以:Rt△ABE≌ Rt△DAF
则:∠BAE=∠ADF
又∠BAE+∠BAD+∠DAH=180°,∠BAD=90°
所以:∠ADF+∠DAH=90°
即:∠AHD=90°=∠FAD
又∠ADH=∠FDA
所以证得△ADH~△FDA (AA)

(2) 由(1)知△ADH~△FDA,则:
AH/FA=AD/FD (*)
由Rt△ABE≌ Rt△DAF得:AE=FD,且BE=FA
所以(*)可化为:
AH/BE=AD/AE
即AH=AD*BE/AE
因为BE=b,AD=a,AE=√(AB²+BE²)=√(a²+b²)
则:AH=ab/√(a²+b²)
所以:AH/AE=[ab/√(a²+b²)]/√(a²+b²)=ab/(a²+b²)

(3)因为AE(AH+HE)
=AE(AH+AE+AH)
=AE²+2AE*AH
且由(2)得AE=√(a²+b²),AH=ab/√(a²+b²)
所以:AE(AH+HE)=[√(a²+b²)]²+2*[√(a²+b²)]*[ab/√(a²+b²)]
=a²+b²+2ab
=(a+b)²
又CE=CB+BE=a+b
所以:CE²=AE(AH+HE)
a1377051
2011-06-22 · TA获得超过8.9万个赞
知道大有可为答主
回答量:1.6万
采纳率:66%
帮助的人:8349万
展开全部

如图,

⑴⊿ABE绕O顺时针旋转90°,到达⊿DAF.∴AE⊥DF.⊿ADH∽⊿FDA﹙题目打错成⊿EDA﹚

⑵ AH=ab/√﹙a²+b²﹚ AE=√﹙a²+b²﹚ ∴AH/AE=ab/﹙a²+b²﹚

⑶ 延长EH到G:GH=AH.  ∠DAP=∠DGP=∠DCP [楼主补充理由!]

DPAC共圆,∠PCA=∠PDA=∠BAE ∴∠GCE=∠CAE ⊿GCE∽⊿CAE 

∴GE/CE=CE/AE  即 CE²=AE×GE=AE(AH+HE).

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善曼凝s5
2011-06-23 · TA获得超过6.8万个赞
知道大有可为答主
回答量:2.8万
采纳率:0%
帮助的人:3640万
展开全部
0.0 -.-
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式