概率论 中P(A-B)=P(A)-P(AB),怎么证明的?一般情况下说A属于B然后结论是P(A-B)=P(A)-P(B)

两种等式区别和联系?并给出上面详细证明过程... 两种等式区别和联系?并给出上面详细证明过程 展开
wangmumu1024
推荐于2019-03-26 · TA获得超过1.8万个赞
知道大有可为答主
回答量:3160
采纳率:100%
帮助的人:2158万
展开全部
首先需要用到这个:
当A∩B=∅ (即A,B互斥)时:P(A+B)=P(A)+P(B);

下面证明提问所给结论:
注意到:当B包含于A时有:
A=B + (A-B) 而且B∩(A-B)=∅
因此有:P(A)=P(B)+P(A-B)
所以就有了后面的结论:【P(A-B)=P(A) - P(B)】

而当没有B包含于A的条件时:则由于:A - B = A - AB
而AB是包含于A的。因此:
因而有P(A-B)=P(A-AB) = P(A) - P(AB)

区别:
P(A-B)=P(A)-P(AB)适用于所有情形
P(A-B)=P(A)-P(B) 只在条件B包含于A成立的时候才成立。

联系:
其实前者是后者的变形而已。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式