设A为n阶方阵,已知矩阵E-A不可逆,那么矩阵A必有一个特征值为
3个回答
展开全部
1。
因为 A-E,A+E,A+3E 均不可逆
所以 |A-E|=0,|A+E|=0,|A+3E|=0
所以 A 有特征值 1,-1,-3
而A是3阶方阵,故 1,-1,3 是A的全部特征值
所以 |A| = 1*(-1)*(-3) = 3.
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。
扩展资料:
特征值是指设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
参考资料来源:百度百科-特征值
展开全部
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询