求由下列方程所确定的隐函数的二阶导数 xy=e^(x+y)
2个回答
展开全部
xy=e^(x+y)
xy=e^xe^y
xe^(-x)=e^y/y
e^(-x)-xe^(-x)=y'(e^y/y-e^y/y^2) y'=[e^(-x)-xe^(-x)]/(e^y/y-e^y/y^2)
-2e^(-x)+xe^(-x)=y''(e^y/y-e^y/y^2)+y'^2(e^y/y+2e^y/y^3)
y''= [-2e^(-x)+xe^(-x)]/(e^y/y-e^y/y^2) - (e^y/y+2e^y/y^3) [e^(-x)-xe^(-x)]^2 / (e^y/y-e^y/y^2)^3
xy=e^xe^y
xe^(-x)=e^y/y
e^(-x)-xe^(-x)=y'(e^y/y-e^y/y^2) y'=[e^(-x)-xe^(-x)]/(e^y/y-e^y/y^2)
-2e^(-x)+xe^(-x)=y''(e^y/y-e^y/y^2)+y'^2(e^y/y+2e^y/y^3)
y''= [-2e^(-x)+xe^(-x)]/(e^y/y-e^y/y^2) - (e^y/y+2e^y/y^3) [e^(-x)-xe^(-x)]^2 / (e^y/y-e^y/y^2)^3
追问
答案写的是y/x^2(y-1)^3
追答
lnxy=x+y
x-lnx=lny-y
1-1/x=y'(1/y-1) y'=(x-1)y/[x(1-y)]
1/x^2=y''(1/y-1)+y'(-1/y^2)
1/x^2+y'/y^2=y''(1/y-1)
y''=1/[x^2(1-y)]+(x-1)/[xy(1-y)^2]
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询