一道高等代数证明题~!
已知p(x)是一个不可约多项式,证明它与任一多项式f(x)只有两种关系:(p(x),f(x))=1,或者p(x)|f(x)...
已知p(x)是一个不可约多项式,证明它与任一多项式f(x)只有两种关系:(p(x),f(x))=1,或者p(x)|f(x)
展开
3个回答
展开全部
设:f(x)=q(x)*p(x)+Q(x), deg(q)>=0,deg(Q)<deg(p),
则(p(x),f(x))=(p(x),Q(x)).
因为p是不可约多项式,若Q不是0多项式,那么比它deg还低的Q显然与它互质:(p(x),Q(x))=1,从而(p(x),f(x))=1。
若Q是0多项式,那么p(x)|f(x)。
则(p(x),f(x))=(p(x),Q(x)).
因为p是不可约多项式,若Q不是0多项式,那么比它deg还低的Q显然与它互质:(p(x),Q(x))=1,从而(p(x),f(x))=1。
若Q是0多项式,那么p(x)|f(x)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是一定理,去查阅大学教材<<高等代数>>高等教育出版社出版
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询