九上 因式分解法——解二元一次方程

1.已知实数X满足X²+X²/1-3X-3/X-8=0,求X+X/1的值。2.已知关于X的二元一次方程(3-K)(2-K)X²-(24-9K... 1.已知实数X满足X²+X²/1-3X-3/X-8=0,求X+X/1的值。
2.已知关于X的二元一次方程(3-K)(2-K)X²-(24-9K)X+18=0的两根均为整数时,求所有满足条件的整数K的值。
快点啊 谢谢了
展开
买昭懿007
2011-07-06 · 知道合伙人教育行家
买昭懿007
知道合伙人教育行家
采纳数:35959 获赞数:160769
毕业于山东工业大学机械制造专业 先后从事工模具制作、设备大修、设备安装、生产调度等工作

向TA提问 私信TA
展开全部
1.
X²+1/X²-3X-3/X-8=0
(X+1/X)²-2 -3(X+1/X)-8=0
(X+1/X)² - 3(X+1/X) - 10=0
{(X+1/X)+2} {(X+1/X) - 5} = 0
X+1/X = -2,或者X+1/X = 5

2.
(3-K)(2-K)X²-(24-9K)X+18=0
{(3-k)x-3} {(2-k)x-6} = 0
x1=3/(3-k),x2=6/(2-k)
两根均为整数
3/(3-k)∈Z,6/(2-k)∈Z
-3≤3-k≤3,且-6≤2-k≤6
0≤k≤6,且-4≤k≤8
∴0≤k≤6
又3-k=-3,-1,1,3,且2-k=-6,-3,-2,-1,1,2,3,6
即k=6,4,2,0且k=8,5,4,3,1,0,-1,-4
综上k=4
追问
第一题看懂了,但是第二题看不懂……
追答
第二题,
(1)先求出两个根分别为:x1=3/(3-k),x2=6/(2-k)

(2)两根都为整数,所以分母的绝对值不大于分子的绝对值,即:-3≤3-k≤3,且-6≤2-k≤6,求得0≤k≤6

(3)两根为整数,并且k为整数,分别求出两根为整数时的k:k=6,4,2,0且k=8,5,4,3,1,0,-1,-4
两组k值共同的只有k=4
弦芳炊豆屡渡AZ
2011-07-14 · TA获得超过239个赞
知道小有建树答主
回答量:1224
采纳率:0%
帮助的人:396万
展开全部
定义:含有未知数的等式叫方程。
等式的基本性质1:等式两边同时加(或减)同一BGFDFHBDF个数或同一个代数式,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式。则:
(1)a+c=b+c
(2)a-c=b-c
等式的基本性质2:等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。

方程的解:使方程左右两边相三等功vdslnnldfn了nl.n。你多少, 哪里、vn 等的未知数的值叫做方程的解。
解方程:求方程的解的过程叫做解方程。
解方程的依据:1.移项; 2.等式的基本性质; 3.合并同类项; 4. 加减乘除各部分间的关系。
解方程的步骤:1.能计算的先计算; 2.转化——计算——结果
例如: 3x=5*6
3x=30
x=30/3
x=10
移项:把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项,根据是等式的基本性质1。
方程有整式方程和GFHFNHFD分式方程。
整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程。
分式方程:分母中含有未知数的方程叫做分式方程。
[编辑本段]一元一次方程
人教版7年级数学上册第三章会学到,冀教版7年级数学下册第七章会学到,苏教版5年级下第一章
定义:只含有一个未知数,且未知数次数是一的整式方程叫一元一次方程。通常形式是kx+b=0(k,b为常数,且k≠0)。
一般解法:
⒈去分母 方程两边同时乘各分母的最小公倍数。
⒉去括号 一般先去小括号,再FHNDHNFSDF去中括号,最后去大括号。但顺序有时可依据情况而定使计算简便。可根据乘法分配律。
⒊移项 把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号。
⒋合并同类项 将原方程化为ax=b(a≠0)的形式。
⒌系数化一 方程两边同时除以未知数的系数。
⒍得出方程的解。
同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程。
方程的同解原理:HFDHDFHF
⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法:
⒈认真HDFHFDH审题
⒉分析已知和未知的量
⒊找一个等量关系
⒋设未知数
⒌列方程
⒍解方FHFDHF程
⒎检(jian三声)验
⒏写出答
教学设计示例
教学目标
1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培HFD养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生HHF初步养成正确思考问题的良好习惯.
教学重点和难点
一元一次方程解简单的应用题的方法和步骤.
课堂教学过程设计
一、从学生原有的认知结构提出问题
在小学算术DHFDNHFDHG中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
例1 某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来FDHDFH解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?
师生共同分析:
1.本题中给出的已知量和未知量各是什么?
2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)
3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?
上述分析过程可列表如下:
解:设原来有x千克面粉,那么运出了15%x千克,由题意,得
x-15%x=42 500,
所以 x=50 000.
答:原来有 50 000千克面粉.
此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?
(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)
教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;
(2)例2的解方程过程较为简捷,同学应注意模仿.
依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:
(1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;
(2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);
(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;
(4)求出所列方程的解;
(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.
[编辑本段]二元一次方程(组)
人教版7年级数学下册会学到,冀教版7年级数学下册第九章会学到。
二元一次方程定义:一个含有两个未知数,并且未知数的指数都是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:
代入消元法
例:解方程组x+y=5① 6x+13y=89②
解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7带入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
这种解法就是代入消元法。
加减消元法
例:解方程组x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7带入①,得7+y=9,解得y=2
∴x=7,y=2
这种解法就是加减消元法。
二元一次方程组的解有三种情况:
1.有一组解
如方程组x+y=5① 6x+13y=89②的解为x=-24/7,y=59/7。
2.有无数组解
如方程组x+y=6① 2x+2y=12②,因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解
如方程组x+y=4① 2x+2y=10②,因为方程②化简后为x+y=5,这与方程①相矛盾,所以此类方程组无解。
[编辑本段]三元一次方程
定义:与二元一次方程类似,三个结合在一起的共含有三个未知数的一次方程。
三元一次方程组的解法:与二元一次方程类似,利用消元法逐步消元。
典型题析:
某地区为了鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨按0.9元/吨收费;超过10吨而不超过20吨按1.6元/吨收费;超过20吨的部分按2.4元/吨收费.某月甲用户比乙用户多缴水费16元,乙用户比丙用户多缴水费7.5元.已知丙用户用水不到10吨,乙用户用水超过10吨但不到20吨.问:甲.乙.丙三用户该月各缴水费多少元(按整吨计算收费)?
解:设甲用水x吨,乙用水y吨,丙用水z吨
显然,甲用户用水超过了20吨
故甲缴费:0.9*10+1.6*10+2.4*(x-20)=2.4x-23
乙缴费:0.9*10+1.6*(y-10)=1.6y-7
丙缴费:0.9z
2.4x-23=1.6y-7+16
1.6y-7=0.9z+7.5
化简得
3x-2y=40----(1)
16y-9z=145-------(2)
由(1)得x=(2y+40)/3
所以设y=1+3k,3<k<7
当k=4,y=13,x=22,代入(2)求得z=7
当k=5,y=16,代入(2),z没整数解
当k=6,y=19,代入(2),z没整数解
所以甲用水22吨,乙用水13吨,丙用水7吨
甲用水29.8元,乙用水13.8元,丙用水6.3元</CA>
[编辑本段]一元二次方程
人教版9年级数学上册会学到,冀教版9年级数学上册第二十九章会学到。
定义:含有一个未知数,并且未知数的最高次数是2的整式方程,这样的方程叫做一元二次方程。
由一次方程到二次方程是个质的转变,通常情况下,二次方程无论是在概念上还是解法上都比一次方程要复杂得多。
一般形式:ax^2+bx+c=0 (a≠0)
一般解法有四种:
⒈公式法(直接开平方法)
⒉配方法
3.因式分解法
4.十字相乘法
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例题

例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1

2 3
1×3+2×1
=5
1 3

2 1
1×1+2×3
=7
1 -1

2 -3
1×(-3)+2×(-1)
=-5
1 -3

2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
 ╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1

3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3

1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2

2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b

c d
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的
方程,其解为x=m± .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以
此方程也可用直接开平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丢解)
∴x=
∴原方程的解为x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=
∴原方程的解为x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+x=-
方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2
方程左边成为一个完全平方式:(x+ )2=
当b2-4ac≥0时,x+ =±
∴x=(这就是求根公式)
例2.用配方法解方程 3x2-4x-2=0
解:将常数项移到方程右边 3x2-4x=2
将二次项系数化为1:x2-x=
方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接开平方得:x-=±
∴x=
∴原方程的解为x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac<0时,无解;方程当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式xx=[-b±√(b^2-4ac)]/2a就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:将方程化为一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= = =
∴原方程的解为x1=,x2= .
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让
两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个
根。这种解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)
(1)解:(x+3)(x-6)=-8 化简整理得
x2-3x-10=0 (方程左边为二次三项式,右边为零)
(x-5)(x+2)=0 (方程左边分解因式)
∴x-5=0或x+2=0 (转化成两个一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法将方程左边分解因式)
∴x=0或2x+3=0 (转化成两个一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
5.十字相乘法
可对形如y=x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
二元二次方程:含有两个未知数且未知数的最高次数为2的整式方程。
[编辑本段]附注
一般地,n元一次方程就是含有n个未知数,且含未知数项次数是1的方程,一次项系数规定不等于0;
n元一次方程组就是几个n元一次方程组成的方程组(一元一次方程除外);
一元a次方程就是含有一个未知数,且含未知数项最高次数是a的方程(一元一次方程除外);
一元a次方程组就是几个一元a次方程组成的方程组(一元一次方程除外);
n元a次方程就是含有n个未知数,且含未知数项最高次数是a的方程(一元一次方程除外);
n元a次方程组就是几个n元a次方程组成的方程组(一元一次方程除外);
方程(组)中,未知数个数大于方程个数的方程(组)叫做不定方程(组),此类方程(组)一般有无数个解。
鸡兔同笼公式
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)
=鸡的只数
总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
=兔的只数
总只数-兔的只数=鸡的只数
解法3:总脚数÷2—总头数=兔的只数
总只数—兔的只数=鸡的只数
解法4(方程):X=总脚数÷2—总头数(X=兔的只数)
总只数—兔的只数=鸡的只数
解法5(方程):X=(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数)
总只数—兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数)
总只数-鸡的只数=兔的只数
祝你学习进步!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7月P4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式