如何学好一次函数

 我来答
心的飞翔1234
2011-07-07 · TA获得超过2.6万个赞
知道大有可为答主
回答量:1180
采纳率:66%
帮助的人:649万
展开全部
初中数学是小学数学的继续,可以分为代数、几何两大部分,目前,初一上学期我们只学习代数。

在小学里,由于我们年纪还小,学习数学主要靠记忆公式、法则和结论(再加上练习),有时明白它们的道理,有时不明白,不明白也没有多大关系,只要算得对就可以了。现在我们学习初中数学,就不仅要记住公式、法则、性质和结论,还要弄清它们是怎么得来的,它们之间的关系是什么。就是说,不仅要会算,还要弄清为什么可以这样算。

学习数学,要以教科书为根据。要认真预习、认真听课、认真复习、认真做题。我们的代数教科书,在每一小节的开头都有一个长方形的框框,框内的文字叫做“应知应会”,就是说,通过这一小节,你应该知道什么,会什么。你可以根据框内的文字去进行预习。认真预习后再去听课,比不预习要好得多。听课后,在做习题前,还要进行复习,检查书上还有哪些文字看不懂,要认真想,都想明白了,再开始做题。通过做题,可以对学过的知识加深记忆。

--------------------------------------------
一次函数的定义与定义式  自变量x和因变量y有如下关系:  y=kx (k为任意不为零实数)  或y=kx+b (k为任意不为零实数,b为任意实数)  则此时称y是x的一次函数。  特别的,当b=0时,y是x的正比例函数。正比例是Y=kx+b。  即:y=kx (k为任意不为零实数)  定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合[编辑本段]一次函数的性质  1.y的变化值与对应的x的变化值成正比例,比值为k  即:y=kx+b(k≠0) (k为任意不为零的实数 b取任何实数)  2.当x=0时,b为函数在y轴上的截距。  3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角)  形。取。象。交。减  4.正比例函数也是一次函数.  5.当k相同,图像平行;当k不同,图像相交[编辑本段]一次函数的图像及性质  1.作法与图形:通过如下3个步骤  (1)列表[一般取两个点,根据两点确定一条直线];  (2)描点;  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)  2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。  3.函数不是数,它是指某一变量过程中两个变量之间的关系。  4.k,b与函数图像所在象限:  y=kx时(即b等于0,y与x成正比)  当k>0时,直线必通过一、三象限,y随x的增大而增大;  当k<0时,直线必通过二、四象限,y随x的增大而减小。  y=kx+b时:  当 k>0,b>0, 这时此函数的图象经过一,二,三象限。  当 k>0,b<0, 这时此函数的图象经过一,三,四象限。  当 k<0,b>0, 这时此函数的图象经过一,二,四象限。  当 k<0,b<0, 这时此函数的图象经过二,三,四象限。  当b>0时,直线必通过一、二象限;  当b<0时,直线必通过三、四象限。  特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。  4、特殊位置关系  当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等  当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) [编辑本段]确定一次函数的表达式  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。  (1)设一次函数的表达式(也叫解析式)为y=kx+b。  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②  (3)解这个二元一次方程,得到k,b的值。  (4)最后得到一次函数的表达式。(还有不懂可以拿例题问我,我帮你解答)

参考资料: http://zhidao.baidu.com/question/3762608.html

饕餮禄蠹
2015-10-02 · TA获得超过7248个赞
知道小有建树答主
回答量:603
采纳率:73%
帮助的人:49.1万
展开全部
  一)、掌握一次函数的解析式的特征
  一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k = 0时,y = b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b = 0,k≠0,y = kx既是正比例函数,也是一次函数。
  (二)、应用一次函数解决实际问题
   1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度( )的正比例函数;
4、求一次函数与正比例函数的关系式,一般采取待定系数法。
  (三)、把握用待定系数法求函数解析式的一般步骤
   1、依题意,设出含有待定系数的函数解析式;
2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);
3、解方程(组),求出待定系数;
4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。
  (四)、正确理解函数与方程及不等式之间的联系
   1、直线y = kx+b与x轴交点的横坐标,是一元一次方程kx+b = 0的解,求直线y = kx+b与x轴的交点,可令y = 0,得到方程kx+b = 0,解方程得x =- ,- 就是直线y = kx+b与x轴交点的横坐标,反之,由函数的图象也能求出对应的一元一次方程的解;
2、使一次函数y = kx+b的函数值y>0(或y<0 的自变量的所有值,就是一元一次不等式kx+b>0(或kx+b<0 的解集。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Gray绍
2011-07-07
知道答主
回答量:60
采纳率:0%
帮助的人:20.7万
展开全部
多做题,弄清楚最基础的变量。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-07-08
展开全部
好好学习天天向上
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式