若实数a不等于b,且a,b满足a2-8a+5=0,b2-8b+5=0,则代数式(b-1)/(a-1)+(a-1)/(b-1)
展开全部
实数a不等于b,且a,b满足a2-8a+5=0,b2-8b+5=0,
则a,b分别是方程x²-8x+5=0的两个实数根
a+b=8
ab=5
(b-1)/(a-1)+(a-1)/(b-1)
=[(b-1)²+(a-1)²]/(a-1)(b-1)
=[a²+b²-2(a+b)+2]/[ab-(a+b)+1]
=[(a+b)²-2ab-2(a+b)+2]/[ab-(a+b)+1]
=(8²-2*8-2*5+2)/(5-8+1)
=-20
则a,b分别是方程x²-8x+5=0的两个实数根
a+b=8
ab=5
(b-1)/(a-1)+(a-1)/(b-1)
=[(b-1)²+(a-1)²]/(a-1)(b-1)
=[a²+b²-2(a+b)+2]/[ab-(a+b)+1]
=[(a+b)²-2ab-2(a+b)+2]/[ab-(a+b)+1]
=(8²-2*8-2*5+2)/(5-8+1)
=-20
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询