已知等差数列{an}和正项等比数列{bn},a1=b1=1,a3+a7=10,b3=a4

若cn=an*bn,求数列{cn}前n项和Tn... 若cn=an*bn,求数列{cn}前n项和Tn 展开
wusikevin
2011-07-11 · TA获得超过2018个赞
知道小有建树答主
回答量:526
采纳率:0%
帮助的人:610万
展开全部
解:
由于{an}为等差数列,故:
a3=a1+2d, a7=a1+6d
a3+a7=2a1+8d=2+8d=10
解得:
d=1
故:
an=a1+(n-1)d=1+(n-1)
=n (n属于N+)
所以:
a4=4
由于{bn}为正项等比数列,故:
b3=b1.q^2=q^2
b3=q^2=a4=4
因为为正项等比数列,故:q>0
解得:
q=2
则:
bn=b1.q^(n-1)=q^(n-1)
=2^(n-1) (n属于N+)
cn=an.bn
=n.2^(n-1) (n属于N+)
因此:
Tn=c1+c2+c3+……+cn
=1+2x2+3x2^2+……+nx2^(n-1)
2Tn=2+2x2^2+3x2^3+……+nx2^n
两式相减得:
2Tn-Tn=Tn
=-1+(2-2x2)+(2x2^2-3x2^2)+(3x2^3-4x2^3)+……+[(n-1)x2^(n-1)-nx2^(n-1)]+nx2^n
=nx2^n-1-[2+2^2+2^3+……+2^(n-1)]
=nx2^n-[2^0+2+2^2+2^3+……+2^(n-1)]
=nx2^n - (2^n-1)
=nx2^n-2^n+1
=(n-1)2^n+1 (n属于N+)
希望对楼主有帮助,如果有不清楚的地方再跟我说吧!
百度网友60a15d448
2011-07-11 · TA获得超过120个赞
知道答主
回答量:72
采纳率:0%
帮助的人:33万
展开全部
an=a1+(n-1)d bn=b1*q^(n-1)
由已知可得:
d=1 q=2或-2 an=n bn=2^(n-1)或(-2)^(n-1)
(1)当q=2时:
Cn=an*bn=n*2^n-1
所以:Tn=n*(2^0+2^1+2^2+。。。+2^n-1)=n(2^n)-1
(2)当q=(-2)时
Cn=n*(-2)^n-1
所以:Tn=n*[(-2)^0+(-2)^1+(-2)^2+。。。+(-2)^n-1]=n*[(1/3-(-2)^n/3]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
馨儿12356
2011-07-11
知道答主
回答量:10
采纳率:0%
帮助的人:0
展开全部
不v
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式