
如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E,F分别在AC,BC上且DE⊥DF。求证CE=BF
2个回答
展开全部
过点D做DM⊥AC DN⊥BC
DM=DN ∠MDN=90°
∠MDE+∠EDM=90°
∠NDF+∠EDM=90°
所以
∠MDE=∠NDF
在△MDE和△NDF
∠MDE=∠NDF
∠DME=∠DNF=90°
DM=DN
所以△MDE≌△NDF(ASA)
所以ME=NF
CE =MC-ME
BF =NB-NF
MC=NB
所以CE=BF
DM=DN ∠MDN=90°
∠MDE+∠EDM=90°
∠NDF+∠EDM=90°
所以
∠MDE=∠NDF
在△MDE和△NDF
∠MDE=∠NDF
∠DME=∠DNF=90°
DM=DN
所以△MDE≌△NDF(ASA)
所以ME=NF
CE =MC-ME
BF =NB-NF
MC=NB
所以CE=BF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询