展开全部
实数x,y满足x²+y²=1,则2xy/(x+y-1)的取值范围
解:∵x²+y²=(x+y)²-2xy=1,故2xy=(x+y)²-1=(x+y+1)(x+y-1),
又∵x²+y²=1,∴可令x=cost,y=sint;
∴2xy/(x+y-1)=(x+y+1)(x+y-1)/(x+y-1)=x+y+1=cost+sint+1=(√2)sin(t+π/4)+1
而-√2≦(√2)sin(t+π/4)≦√2
1-√2≦2xy/(x+y-1)≦1+√2
解:∵x²+y²=(x+y)²-2xy=1,故2xy=(x+y)²-1=(x+y+1)(x+y-1),
又∵x²+y²=1,∴可令x=cost,y=sint;
∴2xy/(x+y-1)=(x+y+1)(x+y-1)/(x+y-1)=x+y+1=cost+sint+1=(√2)sin(t+π/4)+1
而-√2≦(√2)sin(t+π/4)≦√2
1-√2≦2xy/(x+y-1)≦1+√2
展开全部
因为2xy=x^2+2xy+y^2-(x^2+y^2)=(x+y)^2-1,设z=x+y
则2xy/(x+y-1)=[(x+y)^2-1]/(x+y-1)=(z^2-1)/(z-1)=(z+1)(z-1)/(z-1)=z+1
所以,只需求z=x+y的范围即可。首先x+y≠1,即z≠1,z+1≠2
然后,z^2=(x+y)^2=x^2+2xy+y^2=-(x^2-2xy+y^2)+2=-(x-y)^2+2
所以z^2<=2,-√2<=z<=√2,1-√2<=z+1<=1+√2
∴所求式子的取值范围为[1-√2,2)∪(2,1+√2],
或者说1-√2<=所求式<=1+√2,且所求式≠2
则2xy/(x+y-1)=[(x+y)^2-1]/(x+y-1)=(z^2-1)/(z-1)=(z+1)(z-1)/(z-1)=z+1
所以,只需求z=x+y的范围即可。首先x+y≠1,即z≠1,z+1≠2
然后,z^2=(x+y)^2=x^2+2xy+y^2=-(x^2-2xy+y^2)+2=-(x-y)^2+2
所以z^2<=2,-√2<=z<=√2,1-√2<=z+1<=1+√2
∴所求式子的取值范围为[1-√2,2)∪(2,1+√2],
或者说1-√2<=所求式<=1+√2,且所求式≠2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询