已知a+b+c=0,1/a+1 +1/b+2 +1/c+3=0,求(a+1)^2+(b+2)^2+(c+3)^2
2个回答
推荐于2020-03-05
展开全部
不知道,题目有没错?
留个名,回头好找到。。
题目没错的话,不是很简单。
如果是,a+b+c=0,1/(a+1)+1/(b+2)+1/(c+3)=0的话,简单:
1/(a+1)+1/(b+2)+1/(c+3)=0 => [(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)]/[(a+1)(b+2)(c+3)]=0
=>(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0
(a+1)^2+(b+2)^2+(c+3)^2
=[(a+1)+(b+2)+(c+3)]^2-2[(a+1)(b+2)+(a+1)(c+3)+(b+2)(c+3)]
=(a+b+c+6)^2
=36
留个名,回头好找到。。
题目没错的话,不是很简单。
如果是,a+b+c=0,1/(a+1)+1/(b+2)+1/(c+3)=0的话,简单:
1/(a+1)+1/(b+2)+1/(c+3)=0 => [(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)]/[(a+1)(b+2)(c+3)]=0
=>(b+2)(c+3)+(a+1)(c+3)+(a+1)(b+2)=0
(a+1)^2+(b+2)^2+(c+3)^2
=[(a+1)+(b+2)+(c+3)]^2-2[(a+1)(b+2)+(a+1)(c+3)+(b+2)(c+3)]
=(a+b+c+6)^2
=36
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询