K均值聚类法和系统聚类法有什么区别,这两种聚类方法的适用条件都是什么?
适用条件:系统聚类法适于二维有序样品聚类的样品个数比较均匀。K均值聚类法适用于快速高效,特别是大量数据时使用。
两者区别如下:
一、指代不同
2、系统聚类法:又叫分层聚类法,聚类分析的一种方法。
二、步骤不同
1、K均值聚类法:步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
2、系统聚类法:开始时把每个样品作为一类,然后把最靠近的样品(即距离最小的群品)首先聚为小类,再将已聚合的小类按其类间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。
三、目的不同
1、K均值聚类法:终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
2、系统聚类法:是以距离为相似统计量时,确定新类与其他各类之间距离的方法,如最短距离法、最长距离法、中间距离法、重心法、群平均法、离差平方和法、欧氏距离等。
参考资料来源:百度百科-系统聚类法
参考资料来源:百度百科-K均值聚类算法
区别如下:
1、聚类结果不同。
系统聚类对不同的类数产生一系列的聚类结果, 而K均值聚类法只能产生指定类数的聚类结果。
2、做法不同。
系统聚类法其做法是开始时把每个样品作为一类,然后把最靠近的样品(即距离最小的群品)首先聚为小类,再将已聚合的小类按其类间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。
k均值法随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
3、所属类别不同。
系统聚类法属于分层聚类法。
k均值聚类是最著名的划分聚类算法,给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。
使用条件:
k 均值聚类法适合大量数据时,准确性高一些。系统聚类法则是系统自己根据数据之间的距离来自动列出类别,通过系统聚类法得出一个树状图。
参考资料来源:百度百科-k均值聚类法
参考资料来源:百度百科-系统聚类法
推荐于2017-11-24 · 知道合伙人金融证券行家
系统聚类法则是系统自己根据数据之间的距离来自动列出类别,所以通过系统聚类法 得出一个树状图,至于聚类的类别 需要自己根据树状图以及经验来确定