宇航员站在一颗星球表面上的某高处,沿水平方向抛出一个小球。经过时间t,小球落到星球表面,测得抛出点与

宇航员站在一颗星球表面上的某高处,沿水平方向抛出一个小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离L。若抛出时的初速增大到原来的2倍时,测得抛出点与落地... 宇航员站在一颗星球表面上的某高处,沿水平方向抛出一个小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离L。若抛出时的初速增大到原来的2倍时,测得抛出点与落地点之间的距离为 L。且两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。 展开
8888lsw
科技发烧友

2011-07-24 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:2.1万
采纳率:89%
帮助的人:7169万
展开全部
题目有误,“在抛出的初速增大到原来2倍时,抛出点与落地点之间的距离为 L”是错的,应是(根号3)倍L 。
设抛出点到地的高度为H,原来抛出的初速是V0,第一次水平距离为S1,该星球表面的重力加速度是 g
则 H=g t ^2 / 2
S1=V0* t
L^2=(g t ^2 / 2)^2+(V0* t )^2  ....................................方程1
第二次抛出时,初速是2V0,因高度不变,时间不变,所以水平距离S2=2*S1
3*L^2=H^2+S2^2= (g t ^2 / 2)^2+4*(V0* t )^2 ............方程2
由方程1和2 得 g=2*(根号3)*L / (3*t ^2)
由黄金代换 GM=g R^2 得
该星球的质量是 M=g R^2 / G=[ 2*(根号3)*L / (3*t ^2) ] *R^2 / G
默默守候一辈子
2013-03-16
知道答主
回答量:10
采纳率:0%
帮助的人:4.1万
展开全部
设抛出的高度为h,两次抛出的小球飞行时间相同,第一次水平距离为x,第二次为2x,
h2+x2=L2
h2+(2x)2=( 根号3L)2
得:根号3L/3
又∵ h=1/2gt^2,得: 2√3L/3t^2
又∵  mg=GMm/R^2,得: M=(2√3LR^2)/3Gt^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式