设f(x)=lnx,g(x)=f(x)+f'(x)

1)求g(x)的单调区间和最小值2)讨论g(x)与g(1/x)的大小3)求a的取值范围,使得g(a)-g(x)<1/a对任意x>0成立... 1)求g(x)的单调区间和最小值
2)讨论g(x)与g(1/x)的大小
3)求a的取值范围,使得g(a)-g(x)<1/a对任意x>0成立
展开
dennis_zyp
2011-07-24 · TA获得超过11.5万个赞
知道顶级答主
回答量:4万
采纳率:90%
帮助的人:2亿
展开全部
1)f'(x)=1/x
g(x)=lnx+1/x
g'(x)=1/x-1/x^2=(x-1)/x^2=0, x=1
x<1, g'<0, 单调减区间
x>1, g'>0, 单调增区间
最小值在X=1时,g(1)=1
2)g(1/x)=-lnx+x
y=g(x)-g(1/x)=2lnx+1/x-x
y'=2/x-1/x^2-1=(2x-1-x^2)/x^2=-(x-1)^2/x^2<=0
因此有g(x)<=g(1/x)
3) g(a)=lna+1/a
g(x)=lnx+1/x
y=g(a)-g(x)-1/a=lna+1/a-lnx-1/x-1/a=lna-lnx-1/x<0, 恒小于0(当X>0时)
y'=-1/x+1/x^2=(1-x)/x^2
x<1时为增函数,x>1时为减函数,X=1为极大值,此极大值需小于0
y(1)=lna-0-1<0, lna<1
即0<a<e
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式