2个回答
展开全部
证明:
由已知条件易得AB = KE = HG = AD,BK = EF = GF = DH,∠B = ∠E = ∠FGH = ∠HDA =90°
所以由HL得△ABK ≌△KEF ≌△HGF ≌△ADH,得AK = KF = FH = HA.
因此,四边形AKFH是菱形.因为∠2 = ∠3,∠1 + ∠3 = 90°,所以∠1 + ∠2 = ∠AHF = 90°.
故四边形AKFH是正方形.
由已知条件易得AB = KE = HG = AD,BK = EF = GF = DH,∠B = ∠E = ∠FGH = ∠HDA =90°
所以由HL得△ABK ≌△KEF ≌△HGF ≌△ADH,得AK = KF = FH = HA.
因此,四边形AKFH是菱形.因为∠2 = ∠3,∠1 + ∠3 = 90°,所以∠1 + ∠2 = ∠AHF = 90°.
故四边形AKFH是正方形.
追问
K??
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询