数学题探索

22.矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),... 22.矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别
从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),
当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,
可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的
时间为x秒。试解答下列问题:
(3)问当x为何值时,线段MN最短?求此时MN的值。
展开
littlepigus
2011-07-31 · TA获得超过7315个赞
知道大有可为答主
回答量:2082
采纳率:0%
帮助的人:3626万
展开全部
MN=根号[(4-x)^2+(6-x)^2]=根号(2x^2-20x+52) x<=6
MN=根号[2(x-5)^2+2]>=根号2 此时x=5。
更多追问追答
追问
答案好象是2+根号3是最小值
追答
除非题目抄错。
匿名用户
2011-08-12
展开全部
当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,
可得△FMN,过△FMN三边的中点作△PQW。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式