高中数学必修四三角函数题 若sinα+sinβ=√2/2,求cosα+cosβ的取值范围。
1个回答
展开全部
解: 令cosα+cosβ =k 两边平方 有cos^2(α)+cos^2(β)+2cosα*cosβ=k^2 (1)
同理 sinα+sinβ=2分之根号二 两边平方 有sin^2(α)+sin^2(β)+2sinα*sinβ=1/2 (2)
(1)+(2) 有 2+2cosα*cosβ+2sinα*sinβ=k^2+1/2 2+2cos(α-β)=k^2+1/2 (3)
2cos(α-β)=k^2+1/2-2=k^2-3/2 cos(α-β)=1/2*k^2-3/4 因为 |cos(α-β)|《1
所以 |1/2k^2-3/4|《1 -1《1/2k^2-3/4《1 -1/4《1/2k^2《7/4 因为1/2k^2>=0
所以 0《1/2k^2《7/4 0《k^2《7/2 -根号14/2《k《根号14/2
同理 sinα+sinβ=2分之根号二 两边平方 有sin^2(α)+sin^2(β)+2sinα*sinβ=1/2 (2)
(1)+(2) 有 2+2cosα*cosβ+2sinα*sinβ=k^2+1/2 2+2cos(α-β)=k^2+1/2 (3)
2cos(α-β)=k^2+1/2-2=k^2-3/2 cos(α-β)=1/2*k^2-3/4 因为 |cos(α-β)|《1
所以 |1/2k^2-3/4|《1 -1《1/2k^2-3/4《1 -1/4《1/2k^2《7/4 因为1/2k^2>=0
所以 0《1/2k^2《7/4 0《k^2《7/2 -根号14/2《k《根号14/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询