f(x)=sin平方x+2根号3sin(x+π/4)cos(x-π/4)-cos平方x-根号3
(1)求函数f(x)的最小正周期和单调递减区间(2)求函数f(x)在[-π/12,25π/36]上的最大值和最小值,并指出相对应的x的值...
(1)求函数f(x)的最小正周期和单调递减区间
(2)求函数f(x)在[-π/12,25π/36]上的最大值和最小值,并指出相对应的x的值 展开
(2)求函数f(x)在[-π/12,25π/36]上的最大值和最小值,并指出相对应的x的值 展开
展开全部
解:
前提掌握:
sinx*sinx+cosx*cosx=1
cos2x=2*cosx*cosx-1=1-2*sinx*sinx
cos(x-π/4)=-sin(x-π/4+π/2)=-sin(x+π/4)
sin(x+π/4)*sin(x+π/4)=sinx*sinx
asinx+bcosx=根号下(a*a+b*b)sin(x+角度) 其中tan角度=b/a
好,开始做题
f(x)=sinx*sinx+2*根3sin(x+π/4)cos(x-π/4)-cosx*cosx-根3
=(sinx*sinx-cosx*cosx)+2*根3sin(x+π/4)cos(x-π/4)-根3
=1-2*cosx*cosx -2根3sin(x+π/4)*sin(x+π/4)-根3
=-cos2x+根3*【1-2sin(x+π/4)*sin(x+π/4)】-根3-根3
=-cos2x+根3*cos(2x+π/2)-2根3
=-cos2x-根3sin2x-2根3
=2sin(2x+π/3)-2根3
1.
化简结束,得最小正周期T=π
设X=2x+π/3,sinX的单调递减区间为[π/2加减2kπ,3π/2加减2kπ]
即
π/2加减2kπ<=2x+π/3<=3π/2加减2kπ
可得
f(x)的单调递减区间为[-π/12加减kπ,7π/12加减kπ]
2.
由上可得f(x)在(-π/12,5π/12〕上单调递减
当x=-π/12时得最大值 1-2根3 ;
当x=5π/12时得最小值 -1-2根3
即f(x)在(-π/12,5π/12〕的值域为(-1-2根3,1-2根3)
前提掌握:
sinx*sinx+cosx*cosx=1
cos2x=2*cosx*cosx-1=1-2*sinx*sinx
cos(x-π/4)=-sin(x-π/4+π/2)=-sin(x+π/4)
sin(x+π/4)*sin(x+π/4)=sinx*sinx
asinx+bcosx=根号下(a*a+b*b)sin(x+角度) 其中tan角度=b/a
好,开始做题
f(x)=sinx*sinx+2*根3sin(x+π/4)cos(x-π/4)-cosx*cosx-根3
=(sinx*sinx-cosx*cosx)+2*根3sin(x+π/4)cos(x-π/4)-根3
=1-2*cosx*cosx -2根3sin(x+π/4)*sin(x+π/4)-根3
=-cos2x+根3*【1-2sin(x+π/4)*sin(x+π/4)】-根3-根3
=-cos2x+根3*cos(2x+π/2)-2根3
=-cos2x-根3sin2x-2根3
=2sin(2x+π/3)-2根3
1.
化简结束,得最小正周期T=π
设X=2x+π/3,sinX的单调递减区间为[π/2加减2kπ,3π/2加减2kπ]
即
π/2加减2kπ<=2x+π/3<=3π/2加减2kπ
可得
f(x)的单调递减区间为[-π/12加减kπ,7π/12加减kπ]
2.
由上可得f(x)在(-π/12,5π/12〕上单调递减
当x=-π/12时得最大值 1-2根3 ;
当x=5π/12时得最小值 -1-2根3
即f(x)在(-π/12,5π/12〕的值域为(-1-2根3,1-2根3)
追问
=-cos2x+根3*【1-2sin(x+π/4)*sin(x+π/4)】-根3-根3
这部能再解释下吗?好复杂
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询