高中数学导数难题

已知函数f(x)=2ln(x)-x^2。如果函数g(x)=f(x)-ax的图像与x轴交于两点A(a,0)、B(b,0).且0<a<b.y=g'(x)是y=g(x)的导函数... 已知函数f(x)=2ln(x)-x^2。
如果函数g(x)=f(x)-ax的图像与x轴交于两点A(a,0)、B(b,0).且0<a<b.y=g'(x)是y=g(x)的导函数。若正常数p,q满足p+q=1,q≥p.
求证:g'(pa+qb)<0
展开
522597089
2011-08-07 · TA获得超过6786个赞
知道大有可为答主
回答量:1170
采纳率:75%
帮助的人:798万
展开全部
题目:已知函数f(x)=2lnx-x^2.如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且0<x1<x2. 求证:g'(px1+qx2)<0(其中正常数p、q满足p+q=1,q≥p)。
分析,易用反证法。
我们设AB中点C(xo,0),
则有xo=(x1+x2)/2,由p+q=1,q>=p,且p,q为正实数易得0<p<=1/2。
那么(px1+qx2)-xo=px1+(1-p)x2-(x1+x2)/2=(x1-x2)(2p-1)/2>=0,(0<x1<x2)
得到(px1+qx2)>=xo。
由g(x)=2lnx-x^2-ax,得其一阶导数g'(x)=2/x-2x-a,
再对g'(x)求导,得其二阶导数g"(x)=-2/x^2-2<0,(x>0),
知g'(x)在x>0上单调递减,得g'(px1+qx2)<=g'(xo),
于是要证g'(px1+qx2)<0,只需证g'(xo)<0即可。
下面采用反证法证明。
假设g'(xo)>=0成立。
结合已知可得
2lnx1-x1^2-ax1=0.....(1),
2lnx2-x2^2-ax2=0......(2),
2/xo-2xo-a>=0......(3),
xo=(x1+x2)/2......(4),
联立四式消去a得,存在0<x1<x2使得
ln(x2/x1)-2(x2-x1)/(x2+x1)<=0,
即ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]<=0......(5)。
令x2/x1=t,(t>1)并记h(t)=lnt-2(t-1)/(t+1),(t>1)
求导易得h'(t)=(t-1)^2/[t(t+1)^2]>0,(t>1)
则有h(t)在t>1上单调递增,又h(t)可在t=1处连续,
于是h(t)>h(1)=0,(t>1)即lnt-2(t-1)/(t+1)>0
亦即ln(x2/x1)-2[(x2/x1)-1]/[(x2/x1)+1]>0
但与(5)式相矛盾,因此g'(xo)>=0这一假设是不成立的,
进而有g'(xo)<0,于是g'(px1+qx2)<=g'(xo)<0
从而g'(px1+qx2)<0,命题得证。
评论
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1107463699
2011-08-09
知道答主
回答量:61
采纳率:0%
帮助的人:18万
展开全部
不知道
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式