已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交点于点
已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交点于点F,连接AE、CF。(1)求证:AF=CE(2)若AC=...
已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交点于点F,连接AE、CF。
(1)求证:AF=CE
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论。 展开
(1)求证:AF=CE
(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论。 展开
展开全部
1.
∵AF∥CE
∴∠ACE=∠CAF,∠AFE=∠CEF
又∵AD=CD
∴△ADF≌△CDE
∴AF=CE
2.
∵AF∥且=CE
∴AFCE是平行四边形
又∵AC=EF
∴AFCE是矩形 (对角线相等的平行四边形是矩形
∵AF∥CE
∴∠ACE=∠CAF,∠AFE=∠CEF
又∵AD=CD
∴△ADF≌△CDE
∴AF=CE
2.
∵AF∥且=CE
∴AFCE是平行四边形
又∵AC=EF
∴AFCE是矩形 (对角线相等的平行四边形是矩形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵D是AC中点
∴AD=DC(中线定义)
又∵AF∥EB
∴∠AFE=∠FEB,∠FAC=∠ACE
在△ADF和△CDE中
∠AFE=∠FEB
∠FAC=∠ACE
AD=DC
∴△ADF≌CDE
∴AF=CE
(2) ∵△ADF≌△CDE
∴FD=ED,AD=CD
在△FDC和ADE中
FD=DE
AD=CD
∠FDC=∠ADE(对顶角)
∴△FDC≌ADE
∴FC=AE
又∵AF=CE(已证)
即四边形AFCE是平行四边形
∴AD=DC(中线定义)
又∵AF∥EB
∴∠AFE=∠FEB,∠FAC=∠ACE
在△ADF和△CDE中
∠AFE=∠FEB
∠FAC=∠ACE
AD=DC
∴△ADF≌CDE
∴AF=CE
(2) ∵△ADF≌△CDE
∴FD=ED,AD=CD
在△FDC和ADE中
FD=DE
AD=CD
∠FDC=∠ADE(对顶角)
∴△FDC≌ADE
∴FC=AE
又∵AF=CE(已证)
即四边形AFCE是平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:在△ADF和△CDE中,
∵AF∥BE,
∴∠FAD=∠ECD.
又∵D是AC的中点,
∴AD=CD.
∵∠ADF=∠CDE,
∴△ADF≌△CDE.
∴AF=CE.
(2)解:若AC=EF,则四边形AFCE是矩形.
证明:由(1)知:AF=CE,AF∥CE,
∴四边形AFCE是平行四边形.
又∵AC=EF,
∴平行四边形AFCE是矩形.
∵AF∥BE,
∴∠FAD=∠ECD.
又∵D是AC的中点,
∴AD=CD.
∵∠ADF=∠CDE,
∴△ADF≌△CDE.
∴AF=CE.
(2)解:若AC=EF,则四边形AFCE是矩形.
证明:由(1)知:AF=CE,AF∥CE,
∴四边形AFCE是平行四边形.
又∵AC=EF,
∴平行四边形AFCE是矩形.
参考资料: http://www.jyeoo.com/Math/Ques/Detail/67d52079-5887-4c21-9204-7bad4593dc89
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)利用三角形ADF和三角形CDE全等
(2)先证明四边形AFCE是平行四边形 再利用AC=EF 可以得出是矩形
好好看看课本中的定理 相信你在此提示下 一定能做出来
(2)先证明四边形AFCE是平行四边形 再利用AC=EF 可以得出是矩形
好好看看课本中的定理 相信你在此提示下 一定能做出来
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询