(2013?黄州区二模)如图,己知点F是正方形ABCD的边CD的中点,BE⊥AF于E,点G,H在直线AF上,且AE=EG=GH

(2013?黄州区二模)如图,己知点F是正方形ABCD的边CD的中点,BE⊥AF于E,点G,H在直线AF上,且AE=EG=GH.连CG和CH,则下列结论:①tan∠ABE... (2013?黄州区二模)如图,己知点F是正方形ABCD的边CD的中点,BE⊥AF于E,点G,H在直线AF上,且AE=EG=GH.连CG和CH,则下列结论:①tan∠ABE=12;②∠CGH=45°;③∠DEH=45°;④∠GCH=60°,其中正确的是(  )A.①②③B.①②④C.①②③④D.①③④ 展开
 我来答
折绮艳75
推荐于2016-10-18 · 超过78用户采纳过TA的回答
知道答主
回答量:156
采纳率:80%
帮助的人:67.3万
展开全部
∵BE⊥AF,
∴∠ABE+∠BAE=90°,
∵∠DAF+∠BAE=∠BAD=90°,
∴∠ABE=∠DAF,
∵F是CD的中点,
∴DF=FC=
1
2
CD,
∴tan∠ABE=tan∠DAF=
DF
AD
=
1
2
,故①正确;

连接BG,∵AE=EG,BE⊥AF,
∴BE垂直平分线段AG,
∴AB=BG,∠ABE=∠GBE,
∵AB=BC,
∴BG=BC,
过点B作BK⊥CG于K,
则∠CBK=∠GBK,
∴∠EBK=∠EBG+∠GBK=
1
2
∠ABC=
1
2
×90°=45°,
在四边形BKGE中,∠EGK=360°-90°×2-45°=135°,
∴∠CGH=180°-∠EGK=180°-135°=45°,故②正确;

连接DG,∵tan∠ABE=
AE
BE
=
1
2

∴BE=2AE,
∵AG=AE+EG=2AE,
∴AG=BE,
在△ABE和△DAG中,
AD=AB
∠BAE=∠DAF
AG=BE

∴△ABE≌△DAG(SAS),
∴DG=AE,∠DGA=∠AEB=90°,
∵AE=EG,
∴DG=EG,
∴△DEG是等腰直角三角形,
∴∠DEH=45°,故③正确;

连接DH,∵EG=GH,
∴DG垂直平分EH,
∴∠GDH=∠GDE=45°,
∵∠DGA=90°,
∴∠GDF+∠DFG=90°,
又∵∠DFG+∠DAF=180°-90°=90°,
∴∠GDF=∠DAF,
∴tan∠GDF=
GF
DG
=
1
2

∴GF=
1
2
DG,
∵DG=EG=GH,
∴GF=
1
2
GH,
∴GF=FH,
又∵F是CD的中点,
∴DF=FC=
1
2
CD,
∴四边形CHDG是平行四边形,
∴∠GCH=∠GDH=45°,故④错误;
综上所述,正确的有①②③.
故选A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式