如图,直线 y= 1 5 x-1 与x轴,y轴分别相交于B、A,点M为双曲线 y= k x (x>0) 上的一

如图,直线y=15x-1与x轴,y轴分别相交于B、A,点M为双曲线y=kx(x>0)上的一点,且△AMB是以AB为底的等腰直角三角形.(1)求A、B两点坐标;(2)过M点... 如图,直线 y= 1 5 x-1 与x轴,y轴分别相交于B、A,点M为双曲线 y= k x (x>0) 上的一点,且△AMB是以AB为底的等腰直角三角形.(1)求A、B两点坐标;(2)过M点作MC⊥x轴,MD⊥y轴,垂足分别为C、D;求证:△AMD≌△BMC;(3)求k值;(4)问双曲线上是否存在一点Q,使 S △OBQ S △AOQ = 5 4 ?若存在,求Q点坐标;若不存在,说明理由. 展开
 我来答
致莘過n
推荐于2016-06-07 · 超过47用户采纳过TA的回答
知道答主
回答量:97
采纳率:100%
帮助的人:41.4万
展开全部
(1)∵直线y=
1
5
x-1与x轴,y轴分别相交于B、A,
∴当x=0时,y=-1;当y=0时,x=5,
∴A点坐标的坐标为(0,-1),B点坐标为(5,0);

(2)∵△AMB是以AB为底的等腰直角三角形,
∴AM=BM,∠MAB=∠MBA=45°,∠AMB=90°,
∵∠MAD+∠MAB+∠OBA=90°,
∴∠MAD+∠OBA=45°,
∵∠MBC+∠OBA=45°,
∴∠MAD=∠MBC,
∵MC⊥x轴,MD⊥y轴,
∴∠ADM=∠BCM=90°,
在△AMD和△BMC中,
∠MAD=∠MBC
∠ADM=∠BCM
AM=BM

∴△AMD≌△BMC(AAS);

(3)∵MC⊥x轴,MD⊥y轴,
∴∠COD=∠ODM=∠OCM=90°,
∴四边形OCMD是矩形,
∵△AMD≌△BMC,
∴AD=BC,DM=CM,
∴四边形OCMD是正方形,
∴OC=OD,
∵OA=1,OB=5,
设OD=x,
则AD=x+1,BC=5-x,
∵AD=BC,
∴x+1=5-x,
解得:x=2,
即OD=OC=2,
∴点M的坐标为:(2,2),
∴k=xy=4;

(4)存在.
∵k=4,
∴反比例函数的解析式为:y=
4
x

设Q点的坐标为:(a,
4
a
),
∴S △OBQ =
1
2
?OB?
4
a
=
1
2
×5×
4
a
=
10
a
,S △AOQ =
1
2
?OA?a=
1
2
×1×a=
1
2
a,
S △OBQ
S △AOQ
=
5
4

∴4S △OBQ =5S △AOQ
即4×
10
a
=5×
1
2
a,
解得:a=±4,
∵a>0,
∴a=4,
∴Q点的坐标为(4,1).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式