已知f(x)=-4x^2+4ax-4a-a^2在区间【0,1】内的最大值为-5,求a 的值
4个回答
展开全部
f(x)=-4x^2+4ax-4a-a^2
f'(x) = -8x+4a
f'(x) =0
=> x = a/2
f''(x) = -8 ( max )
if a/2 在区间[0,1]
f(a/2) = -5
-a^2+2a^2-4a-a^2 =5
-4a= 5
a= -5/4 ( rejected)
ie a/2在区间 (-无限,0)U(1,+无限)
=> a在区间 (-无限,0)U(2,+无限)
if a在区间 (-无限,0)
f'(x) = -8x+4a <0 ( decreasing )
max f(x) at x= 0
f(0) = -4a-a^2 =5
a/62+4a-5 =0
(a+5)(a-1) =0
a = -5 or 1 ( rejected)
if a在区间 (2,+无限)
f'(x) = -8x+4a >0 ( increasing )
max f(x) at x= 1
f(1) = -4+4a-4a-a^2 = -5
a^2-1 =0
a= 1 or -1 (rejected )
ie a=1 or a= -5
f'(x) = -8x+4a
f'(x) =0
=> x = a/2
f''(x) = -8 ( max )
if a/2 在区间[0,1]
f(a/2) = -5
-a^2+2a^2-4a-a^2 =5
-4a= 5
a= -5/4 ( rejected)
ie a/2在区间 (-无限,0)U(1,+无限)
=> a在区间 (-无限,0)U(2,+无限)
if a在区间 (-无限,0)
f'(x) = -8x+4a <0 ( decreasing )
max f(x) at x= 0
f(0) = -4a-a^2 =5
a/62+4a-5 =0
(a+5)(a-1) =0
a = -5 or 1 ( rejected)
if a在区间 (2,+无限)
f'(x) = -8x+4a >0 ( increasing )
max f(x) at x= 1
f(1) = -4+4a-4a-a^2 = -5
a^2-1 =0
a= 1 or -1 (rejected )
ie a=1 or a= -5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
推荐回答明显错掉了不要误导好吧,只有发图的答案是对的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询