如图,在直角梯形纸片ABCD中AB‖DC,∠A=90º,CD>AD。将纸片沿过点D的直线折叠,
使点A落在边CD上的E处,折痕为DF。连接EF并展开纸片1,求证四边形ADEF是正方形2,取现段AF的中点G,连接EG,如果BG=CD,式证明四边形CBCE是等腰梯形...
使点A落在边CD上的E处,折痕为DF。连接EF并展开纸片
1,求证四边形ADEF是正方形
2,取现段AF的中点G,连接EG,如果BG=CD,式证明四边形CBCE是等腰梯形 展开
1,求证四边形ADEF是正方形
2,取现段AF的中点G,连接EG,如果BG=CD,式证明四边形CBCE是等腰梯形 展开
5个回答
2011-08-12
展开全部
首先,角A=角ADE=角DEF
所以是矩形
又因为AD=DE
所以是正方形
连接DG,用三角形ADG和三角形FEG全等证DG=EG
又因为CD=BG,CD平行于BG,所以四边形GBCD为平行四边形
所以DG=BC
又因为DG=EG
所以EG=BC
易证得CE平行于BG且EG不平行于BC
所以四边形是等腰梯形
所以是矩形
又因为AD=DE
所以是正方形
连接DG,用三角形ADG和三角形FEG全等证DG=EG
又因为CD=BG,CD平行于BG,所以四边形GBCD为平行四边形
所以DG=BC
又因为DG=EG
所以EG=BC
易证得CE平行于BG且EG不平行于BC
所以四边形是等腰梯形
展开全部
证明:(1))∵△DEF由△DAF折叠而得,
∴∠DEF=∠A=90°,DA=DE,
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四边形ADEF是矩形.(4分)
又∵DA=DE,
∴四边形ADEF是正方形.(5分)
(2)由折叠及图形特点易得EG与CB不平行,
连接DG,
∵BG∥CD,且BG=CD,
∴四边形BCDG是平行四边形.
∴CB=DG.
∵四边形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中点,
∴AG=FG.
在△DAG和△EFG中DA=EF∠A=∠EFGAG=FG,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四边形GBCE是等腰梯形.(12分)
∴∠DEF=∠A=90°,DA=DE,
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四边形ADEF是矩形.(4分)
又∵DA=DE,
∴四边形ADEF是正方形.(5分)
(2)由折叠及图形特点易得EG与CB不平行,
连接DG,
∵BG∥CD,且BG=CD,
∴四边形BCDG是平行四边形.
∴CB=DG.
∵四边形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中点,
∴AG=FG.
在△DAG和△EFG中DA=EF∠A=∠EFGAG=FG,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四边形GBCE是等腰梯形.(12分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)依题意,有∠DEF=∠A=90°,DA=DE.(2分)
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四边形ADEF是矩形.(4分)
又∵DA=DE,
∴四边形ADEF是正方形.(5分)
(2)由折叠及图形特点易得EG与CB不平行,
连接DG,
∵BG∥CD,且BG=CD,
∴四边形BCDG是平行四边形.
∴CB=DG.
∵四边形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中点,
∴AG=FG.
在△DAG和△EFG中 DA=EF ∠A=∠EFG AG=FG ,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四边形GBCE是等腰梯形.(12分)
∵AB∥CD,
∴∠ADE=180°-∠A=90°.
∴∠DEF=∠A=∠ADE=90°.
∴四边形ADEF是矩形.(4分)
又∵DA=DE,
∴四边形ADEF是正方形.(5分)
(2)由折叠及图形特点易得EG与CB不平行,
连接DG,
∵BG∥CD,且BG=CD,
∴四边形BCDG是平行四边形.
∴CB=DG.
∵四边形ADEF是正方形,
∴EF=DA,∠EFG=∠A=90°.
∵G是AF的中点,
∴AG=FG.
在△DAG和△EFG中 DA=EF ∠A=∠EFG AG=FG ,
∴△DAG≌△EFG(SAS).(10分)
∴DG=EG.(11分)
∴EG=BC.
∴四边形GBCE是等腰梯形.(12分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一楼的帅哥,你答对了!!! 谢谢呀! 正好我需要耶~~ 感谢提问者~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询