一天24小时中,时针,分针和秒针完全重合的有几次,分别是什么时间
4个回答
展开全部
解决方法:
在0点到12点之间共有12个阶段,每个阶段时针都会与分针有一次重合,但是11点到12点与0点时的是一样的,因此,减少一个,共11个,因此,在0点到24点之间,时针和分针共重合次数是22次。
现在在看看秒针,秒针是否能够在时针和分针重合的时候一起重合,只需要查看前面的11次即可,后面的11次与前面的11次是一样的:
0点时,三针重合;
一小时,时针和分针重合的时间是:假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω。分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时;因此,不同时间是12 n /11。
时针每走一小时,转30°,秒针每走一秒,转6°,因此,
时针30°t n =(360/11)n°=(32+8/11)n°;
秒针360(t n -n)6°=(2160/11)n°=(196+4/11)n°
因此,时针和秒针不重合,因此,重合的时间只有0点和24点。
在0点到12点之间共有12个阶段,每个阶段时针都会与分针有一次重合,但是11点到12点与0点时的是一样的,因此,减少一个,共11个,因此,在0点到24点之间,时针和分针共重合次数是22次。
现在在看看秒针,秒针是否能够在时针和分针重合的时候一起重合,只需要查看前面的11次即可,后面的11次与前面的11次是一样的:
0点时,三针重合;
一小时,时针和分针重合的时间是:假设时针的角速度是ω(ω=π/6每小时),则分针的角速度为12ω。分针与时针再次重合的时间为t,则有12ωt-ωt=2π,t=12/11小时;因此,不同时间是12 n /11。
时针每走一小时,转30°,秒针每走一秒,转6°,因此,
时针30°t n =(360/11)n°=(32+8/11)n°;
秒针360(t n -n)6°=(2160/11)n°=(196+4/11)n°
因此,时针和秒针不重合,因此,重合的时间只有0点和24点。
展开全部
两次,午夜12点整和正午12点。在一小时范围内,时针与分针只相遇一次,而又需同时保证秒针相遇 ,不能同时满足。如在0~1点内,可知12/11点时针与分针第二次相遇,经过时间为5又5/11分钟,可知此时秒针指向与时针/分针不重合。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一天24小时中,时针,分针和秒针完全重合的有几次,分别是什么时间?
11×2=22次,即
1时、13时的30/(6-0.5)=60/11=5又5/11分
2时、14时的60/(6-0.5)=120/11=10又10/11分
3时、15时的90/)6-0.5)=180/11=16又4/11分
4时、16时的120/(6-0.5)=240/11=21又9/11分
5时、17时的150/(6-0.5)=300/11=27又3/11分
6时、18时的180/(6-0.5)=360/11=32又8/11分
7时、19时的210/(6-0.5)=420/11=38又2/11分
8时、20时的240/(6-0.5)=480/11=43又7/11分
9时、21时的270/(6-0.5)=540/11=49又1/11分
10时、22时的300/(6-0.5)=600/11=54又6/11分
12时、24时整
11×2=22次,即
1时、13时的30/(6-0.5)=60/11=5又5/11分
2时、14时的60/(6-0.5)=120/11=10又10/11分
3时、15时的90/)6-0.5)=180/11=16又4/11分
4时、16时的120/(6-0.5)=240/11=21又9/11分
5时、17时的150/(6-0.5)=300/11=27又3/11分
6时、18时的180/(6-0.5)=360/11=32又8/11分
7时、19时的210/(6-0.5)=420/11=38又2/11分
8时、20时的240/(6-0.5)=480/11=43又7/11分
9时、21时的270/(6-0.5)=540/11=49又1/11分
10时、22时的300/(6-0.5)=600/11=54又6/11分
12时、24时整
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
24次,每个小时都有一次,不行你拿个钟转转
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询