高中三角函数问题
在三角形ABC中求证(sin(A/2))^2+(sin(B/2))^2+(sin(c/2))^2=1-2sin(A/2)*sin(B/2)*sin(C/2)详细过程...
在三角形ABC中 求证
(sin(A/2))^2+(sin(B/2))^2+(sin(c/2))^2=1-2sin(A/2)*sin(B/2)*sin(C/2)
详细过程 展开
(sin(A/2))^2+(sin(B/2))^2+(sin(c/2))^2=1-2sin(A/2)*sin(B/2)*sin(C/2)
详细过程 展开
3个回答
展开全部
sin(A/2)^2+sin(B/2)^2+(sinC/2)^2
=[sin(A/2)]^2+(1-cosB)/2+(1-cosC)/2
=1+[sin(A/2)]^2-(cosB+cosC)/2
=1+{cos[(B+C)/2]}^2-cos[(B+C)/2]cos[(B-C)/2] 和差化积
=1+cos[(B+C)/2]{cos[(B+C)/2]-cos[(B-C)/2]} 和差化积
=1+sin(A/2)*(-2)sin(B/2)sin(C/2)
=1-2sin(A/2)sin(B/2)sin(C/2)
=[sin(A/2)]^2+(1-cosB)/2+(1-cosC)/2
=1+[sin(A/2)]^2-(cosB+cosC)/2
=1+{cos[(B+C)/2]}^2-cos[(B+C)/2]cos[(B-C)/2] 和差化积
=1+cos[(B+C)/2]{cos[(B+C)/2]-cos[(B-C)/2]} 和差化积
=1+sin(A/2)*(-2)sin(B/2)sin(C/2)
=1-2sin(A/2)sin(B/2)sin(C/2)
展开全部
这个貌似是常用的 要记住的
sin(A/2)^2+sin(B/2)^2+(sinC/2)^2
=[sin(A/2)]^2+(1-cosB)/2+(1-cosC)/2
=1+[sin(A/2)]^2-(cosB+cosC)/2
=1+{cos[(B+C)/2]}^2-cos[(B+C)/2]cos[(B-C)/2]
=1+cos[(B+C)/2]{cos[(B+C)/2]-cos[(B-C)/2]}
=1+sin(A/2)*(-2)sin(B/2)sin(C/2)
=1-2sin(A/2)sin(B/2)sin(C/2)
sin(A/2)^2+sin(B/2)^2+(sinC/2)^2
=[sin(A/2)]^2+(1-cosB)/2+(1-cosC)/2
=1+[sin(A/2)]^2-(cosB+cosC)/2
=1+{cos[(B+C)/2]}^2-cos[(B+C)/2]cos[(B-C)/2]
=1+cos[(B+C)/2]{cos[(B+C)/2]-cos[(B-C)/2]}
=1+sin(A/2)*(-2)sin(B/2)sin(C/2)
=1-2sin(A/2)sin(B/2)sin(C/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询