高等数学。不定积分。波浪线怎么来的?
展开全部
∵∫cscxdx=ln|cscx-cotx|+C——这可以看做公式记忆。
∴∫1/sinxdx=∫cscxdx=ln|cscx-cotx|+C
详解:
∫cscxdx=∫1/sinxdx
=∫1/[2sin(x/2)cos(x/2)]dx
=∫1/[tan(x/2)cos^2(x/2)]d(x/2)
=∫sec^2(x/2)/tan(x/2)d(x/2)
=∫1/tan(x/2)dtan(x/2)
=ln|tan(x/2)|+C
∵tan(x/2)=sin(x/2)/cos(x/2)
=2sin^2(x/2)/[2sin(x/2)cos(x/2)]
=(1-cosx)/sinx
=1/sinx-cosx/sinx
=cscx-cotx
∴ln|tan(x/2)|+C
=ln|cscx-cotx|+C
∴∫1/sinxdx=∫cscxdx=ln|cscx-cotx|+C
详解:
∫cscxdx=∫1/sinxdx
=∫1/[2sin(x/2)cos(x/2)]dx
=∫1/[tan(x/2)cos^2(x/2)]d(x/2)
=∫sec^2(x/2)/tan(x/2)d(x/2)
=∫1/tan(x/2)dtan(x/2)
=ln|tan(x/2)|+C
∵tan(x/2)=sin(x/2)/cos(x/2)
=2sin^2(x/2)/[2sin(x/2)cos(x/2)]
=(1-cosx)/sinx
=1/sinx-cosx/sinx
=cscx-cotx
∴ln|tan(x/2)|+C
=ln|cscx-cotx|+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询