1个回答
展开全部
则在区间[-2,0]上单调递增
定义域
-2<=m<=2
-2<=1-m<=2
-3<=-m<=1
-1<=m<=3
所以-1<=m<=2
若1-m>=0,m>=0
0<=m<=1
f(x)递减
则1-m>m
m<1/2
0<=m<1/2
若1-m<0,m<0
不成立
若1-m>0,m<0
-2<=m<0
f(m)=f(-m)
-m>0
此时f(x)递减
所以1-m>-m
1>0
恒成立
-1<=m<0
若1-m<0,m>0
1<m<2
f(m)=f(-m)
-m<0
此时f(x)递增
所以1-m<-m
1<0
不成立
综上-1<=m<1/2
定义域
-2<=m<=2
-2<=1-m<=2
-3<=-m<=1
-1<=m<=3
所以-1<=m<=2
若1-m>=0,m>=0
0<=m<=1
f(x)递减
则1-m>m
m<1/2
0<=m<1/2
若1-m<0,m<0
不成立
若1-m>0,m<0
-2<=m<0
f(m)=f(-m)
-m>0
此时f(x)递减
所以1-m>-m
1>0
恒成立
-1<=m<0
若1-m<0,m>0
1<m<2
f(m)=f(-m)
-m<0
此时f(x)递增
所以1-m<-m
1<0
不成立
综上-1<=m<1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询