求∫x/(2-3x²)½dx的值

 我来答
Dilraba学长
高粉答主

2019-05-16 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411027

向TA提问 私信TA
展开全部

(-1/3)*√(2-3x²)+C

解题过程如下:

原式=(1/6)∫[1/√(2-3x²)]d(3x²)

=(-1/6)∫[1/√(2-3x²)]d(2-3x²)

=(-1/6)×2×√(2-3x²)+C

=(-1/3)*√(2-3x²)+C

在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。

不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。

由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。

因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

体育wo最爱
高粉答主

2016-11-29 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.8万
采纳率:72%
帮助的人:1.1亿
展开全部
原式=(1/6)∫[1/√(2-3x²)]d(3x²)
=(-1/6)∫[1/√(2-3x²)]d(2-3x²)
=(-1/6)×2×√(2-3x²)+C
=(-1/3)*√(2-3x²)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善解人意一
高粉答主

2016-11-29 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.6万
采纳率:84%
帮助的人:7417万
展开全部


供参考。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式