第八题,第九题?第十题?
展开全部
8.
令e^x=t,则x=lnt
1/[t²(1+t²)]dt
∫[1/t² -1/(1+t²)]dt
=-1/t -arctant +C
=-e^(-x) -arctan(e^x) +C
9.
∫xf''(x)dx
=∫xd[f'(x)]
=xf'(x)-∫f'(x)dx
=xf'(x)-f(x) +C
10.
f(e^x)=∫[1+e^(3x)]dx
=x+⅓e^(3x) +C
令e^x=t,则x=lnt
x=0,t=1
f(t)=lnt +⅓t³ +C
f(1)=ln1+⅓·1³+C=1
c=-⅔
f(t)=lnt +⅓t³-⅔
将t换成x
f(x)=lnx +⅓x³-⅔
令e^x=t,则x=lnt
1/[t²(1+t²)]dt
∫[1/t² -1/(1+t²)]dt
=-1/t -arctant +C
=-e^(-x) -arctan(e^x) +C
9.
∫xf''(x)dx
=∫xd[f'(x)]
=xf'(x)-∫f'(x)dx
=xf'(x)-f(x) +C
10.
f(e^x)=∫[1+e^(3x)]dx
=x+⅓e^(3x) +C
令e^x=t,则x=lnt
x=0,t=1
f(t)=lnt +⅓t³ +C
f(1)=ln1+⅓·1³+C=1
c=-⅔
f(t)=lnt +⅓t³-⅔
将t换成x
f(x)=lnx +⅓x³-⅔
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询