解:延长BA交CE延长线于G,
∵DE=DC,
∴∠DEC=∠DCE,
∵AB//DC,
∴∠G=∠DCE=∠DEC=∠AEG,
∴AG=AE,
设BD=CD=DE=x,AG=AE=BF=y,则AD=x+y,AB=√(AD²-BD²)=√(2xy+y²),
∵BG:CD=BF:DF,
即[√(2xy+y²)+y]:x=y:(x-y),
化简得2x³y=3x²y²,y=2/3x,
AD=5/3x,AB=4/3x,
S四边形ABCD=1/2×(AB+DC)×BD=7/6x²=63,
x=3√6,y=2√6
DF=3√6-2√6=√6.