已知,四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD、DC
上述结论:AE+CF=EF当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明,若不成立,线段AE、CF、EF又有怎样的数量...
上述结论:AE+CF=EF当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明,若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,并证明
展开
3个回答
展开全部
图(2)结论不变(AE+CF=EF),思路为:根据题目已知条件可得,∠ABC=120°,所以当,
∠MBN=60°时,∠CBF+∠ABE=60°,易证AE+CF=EF。
图(3)结论为EF=AE-CF。思路为:当∠MBN=60°时,∠CBF必须小于30°,否则BM与AD在下方无交点。然后取特殊值,令∠CBF=15°或者0°,计算可得,EF=AE-CF。
∠MBN=60°时,∠CBF+∠ABE=60°,易证AE+CF=EF。
图(3)结论为EF=AE-CF。思路为:当∠MBN=60°时,∠CBF必须小于30°,否则BM与AD在下方无交点。然后取特殊值,令∠CBF=15°或者0°,计算可得,EF=AE-CF。
参考资料: http://zhidao.baidu.com/question/276563029.html
展开全部
解:(1)AE+CF=EF;
(2)成立.
理由是:延长EA到G,使AG=FC
∵GA=FC,∠GAB=∠FCB,AB=CB,
∴△GAB≌△FCB,
∴∠GBA=∠FBC,GB=FB,AG=CF,
∵∠FBC+∠FBA=60°,
∴∠GBA+∠FBA=60°,
即:∠GBF=60°
∵∠EBF=30°,
∴∠GBE=30°,
∵GB=FB,∠GBE=∠FBC,BE=BE,
∴△GBE≌△FBE,
∴GE=FE
∵GE=AG+AE,
∴EF=AE+CF;
(3)图3:AE-CF=EF;图4:AE+EF=CF.
(2)成立.
理由是:延长EA到G,使AG=FC
∵GA=FC,∠GAB=∠FCB,AB=CB,
∴△GAB≌△FCB,
∴∠GBA=∠FBC,GB=FB,AG=CF,
∵∠FBC+∠FBA=60°,
∴∠GBA+∠FBA=60°,
即:∠GBF=60°
∵∠EBF=30°,
∴∠GBE=30°,
∵GB=FB,∠GBE=∠FBC,BE=BE,
∴△GBE≌△FBE,
∴GE=FE
∵GE=AG+AE,
∴EF=AE+CF;
(3)图3:AE-CF=EF;图4:AE+EF=CF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询