f(x )=ln(1+x²)求导数
展开全部
f(x)=ln(x+√1+x^2)
f'(x)=1/(x+√(1+x^2)
*(x+√1+x^2)'
=1/(x+√(1+x^2)*(1+(√1+x^2)'
=1/(x+√(1+x^2)*(1+1/2*√(x^2+1)
*(x^2)')
=1/(x+√(1+x^2)*(1+1/2*√(x^2+1)
*2x)
=(1+x/√(x^2+1))/(x+√(1+x^2)
分子分母乘x-√(1+x^2)
=(1+x/√(x^2+1)(x-√(x^2+1)/(x^2-1-x^2)
=(1+x/√(x^2+1)(√(x^2+1)-x)
=√(x^2+1)-x+x-x^2/√(x^2+1)
=√(x^2+1-供籂垛饺艹祭讹熄番陇x^2√(x^2+1)/(x^2+1)
=√(x^2+1)(1-x^2/(x^2+1))
=√(x^2+1)(x^2+1-x^2)/(x^2+1)
=√(x^2+1)/(x^2+1)
f'(x)=1/(x+√(1+x^2)
*(x+√1+x^2)'
=1/(x+√(1+x^2)*(1+(√1+x^2)'
=1/(x+√(1+x^2)*(1+1/2*√(x^2+1)
*(x^2)')
=1/(x+√(1+x^2)*(1+1/2*√(x^2+1)
*2x)
=(1+x/√(x^2+1))/(x+√(1+x^2)
分子分母乘x-√(1+x^2)
=(1+x/√(x^2+1)(x-√(x^2+1)/(x^2-1-x^2)
=(1+x/√(x^2+1)(√(x^2+1)-x)
=√(x^2+1)-x+x-x^2/√(x^2+1)
=√(x^2+1-供籂垛饺艹祭讹熄番陇x^2√(x^2+1)/(x^2+1)
=√(x^2+1)(1-x^2/(x^2+1))
=√(x^2+1)(x^2+1-x^2)/(x^2+1)
=√(x^2+1)/(x^2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询