已知tanα和tan(π/4 –α)是方程x2+px+q=0的两个根,则p、q满足的关系式:
展开全部
由和角公式
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
得
tan[α+(π/4-α)]=[tanα+tan(π/4-α)]/[1-tanα·tan(π/4-α)]
∴[tanα+tan(π/4-α)]/[1-tanα·tan(π/4-α)]=1
tanα+tan(π/4-α)=1-tanα·tan(π/4-α)
tanα+tan(π/4-α)+tanα·tan(π/4-α)-1=0.....(*)
又tanα和tan(π/4 -α)是方程x²+px+q=0的两个根
由韦达定理(根与系数的关系)知
tanα+tan(π/4-α)=-p
tanα·tan(π/4-α)=q
代入(*)得
-p+q-1=0
∴p-q+1=0
选A
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
得
tan[α+(π/4-α)]=[tanα+tan(π/4-α)]/[1-tanα·tan(π/4-α)]
∴[tanα+tan(π/4-α)]/[1-tanα·tan(π/4-α)]=1
tanα+tan(π/4-α)=1-tanα·tan(π/4-α)
tanα+tan(π/4-α)+tanα·tan(π/4-α)-1=0.....(*)
又tanα和tan(π/4 -α)是方程x²+px+q=0的两个根
由韦达定理(根与系数的关系)知
tanα+tan(π/4-α)=-p
tanα·tan(π/4-α)=q
代入(*)得
-p+q-1=0
∴p-q+1=0
选A
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询