设二维随机变量(X,Y)的概率密度为:f(x,y)=12y^2,0<=y<=x<=1;f(x,y)=0,其他,求E(X),E(Y),E(X^2+Y^2)。
2个回答
展开全部
EX=∫∫[0<=y<=x<=1] xf(x,y)dxdy=∫[0->1]∫[0->x] 12xy²dydx=4/5
EY=∫∫[0<=y<=x<=1] yf(x,y)dxdy=∫[0->1]∫[0->x] 12y³dydx=3/5
E(X²+Y²)=∫∫[0<=y<=x<=1] (x²+y²)f(x,y)dxdy=∫[0->1]∫[0->x] 12x²y²+12y^4dydx=16/15
EY=∫∫[0<=y<=x<=1] yf(x,y)dxdy=∫[0->1]∫[0->x] 12y³dydx=3/5
E(X²+Y²)=∫∫[0<=y<=x<=1] (x²+y²)f(x,y)dxdy=∫[0->1]∫[0->x] 12x²y²+12y^4dydx=16/15
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询