用放缩法证明: 1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<(n-1)/n (n=2,3,````)
用放缩法证明:1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<(n-1)/n(n=2,3,````)...
用放缩法证明: 1/2-1/(n+1)<1/(2^2)+1/(3^3)+````+1/(n^2)<(n-1)/n (n=2,3,````)
展开
4个回答
展开全部
1/(2*2)+1/(3*3)+````+1/(n^2)<1/(1*2)+1/(3*3)+````+1/(n*(n-1)=(1-1/2)+(1/2-1/3) +...(1/(n-1)-1/n)
=1-1/n=(n-1)/n, (n=2,3,````)
1/(2*2)+1/(3*3)+````+1/(n^2)>1/(2*3)+1/(3*4)+````+1/n*(n+1)=(1/2-1/3) +...(1/n-1/(n+1))
=1/2-1/(n+1)=(n-1)/n, (n=2,3,````)
1/2-1/(n+1)<1/(2*2)+1/(3*3)+````+1/(n^2)<(n-1)/n (n=2,3,````)
不清楚请追问,晚上好。。。
=1-1/n=(n-1)/n, (n=2,3,````)
1/(2*2)+1/(3*3)+````+1/(n^2)>1/(2*3)+1/(3*4)+````+1/n*(n+1)=(1/2-1/3) +...(1/n-1/(n+1))
=1/2-1/(n+1)=(n-1)/n, (n=2,3,````)
1/2-1/(n+1)<1/(2*2)+1/(3*3)+````+1/(n^2)<(n-1)/n (n=2,3,````)
不清楚请追问,晚上好。。。
追问
请问为啥放大的那一步 最后加的是(1/n-1/(n+1))啊
追答
因为最后一项是1/n*(n+1)=1/n-1/(n+1) 相对应的
展开全部
1/(2^2)+1/(3^3)+````+1/(n^2)>1/2*3+1/3*4+.....+1/n(n+1)=1/2-1/3+1/3-1/4+....+1/n-1/(n+1)
=1/2-1/(n+1)
1/(2^2)+1/(3^3)+````+1/(n^2)<1/2*1+1/3*2+....1/n(n-1)=1/2+1/2-1/3+1/3-1/4+.....+1/(n-1)-1/n
=1/2+1/2-1/n
=1-1/n
=(n-1)/n
=1/2-1/(n+1)
1/(2^2)+1/(3^3)+````+1/(n^2)<1/2*1+1/3*2+....1/n(n-1)=1/2+1/2-1/3+1/3-1/4+.....+1/(n-1)-1/n
=1/2+1/2-1/n
=1-1/n
=(n-1)/n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(2^2)+1/(3^2)+````+1/(n^2)>1/(2*3)+1/(3*4)+````+1/[n*(n+1)]=1/2-1/3+1/3-1/4+...+1/n-1/(n+1)=1/2-1/(n+1);
1/(2^2)+1/(3^2)+````+1/(n^2)<1/(1*2)+1/(2*3)+````+1/[(n-1)*n]=1-1/2+1/2-1/3+...+1/(n-1)-1/n=1-1/n.
n=2,3,...
1/(2^2)+1/(3^2)+````+1/(n^2)<1/(1*2)+1/(2*3)+````+1/[(n-1)*n]=1-1/2+1/2-1/3+...+1/(n-1)-1/n=1-1/n.
n=2,3,...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询