在三角形ABC中已知a+b+c=6, 求a.cos²c/2+c.cos²A/2的值 求解答,谢谢
1个回答
展开全部
余弦定理及cos(2a)=2(cosa)^2-1的应用
a*[cos(c/2)]^2/2+c*[cos(a/2)]^2/2
=a*(1+cosc)/2+c(1+cosa)/2
=a/2+(a/2)*(a^2+b^2-c^2)/(2ab)+c/2+(c/2)*(b^2+c^2-a^2)/(2bc)
=(a/2+c/2)+(a^2+b^2-c^2)/(4b)+(b^2+c^2-a^2)/(4b)
=(a/2+c/2)+2b^2/(4b)=a/2+b/2+c/2=6/2=3
a*[cos(c/2)]^2/2+c*[cos(a/2)]^2/2
=a*(1+cosc)/2+c(1+cosa)/2
=a/2+(a/2)*(a^2+b^2-c^2)/(2ab)+c/2+(c/2)*(b^2+c^2-a^2)/(2bc)
=(a/2+c/2)+(a^2+b^2-c^2)/(4b)+(b^2+c^2-a^2)/(4b)
=(a/2+c/2)+2b^2/(4b)=a/2+b/2+c/2=6/2=3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询