在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上,且AF=CE,求证
在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形...
在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形
展开
5个回答
展开全部
首先纠正应为“求证四边形ABEF是菱形”。
证明:因DE垂直平分BC垂足为点D交AB于点E,所以DE是三角形ABC的中位线,平行底边AB,E是AC中点。所以,CE=EA=BE。
又角BAC等于60度,所以三角形BEA是等边三角形,即BA=AB=BE。
因DF平行BA,所以叫FEA=角EAB=60度。
又AF等于CE,CE=AE=AB。所以三角形AEF是等边三角形,AF=FE=EA,
即AF=AB=BE=AE,故四边形ABEF是菱形。
证明:因DE垂直平分BC垂足为点D交AB于点E,所以DE是三角形ABC的中位线,平行底边AB,E是AC中点。所以,CE=EA=BE。
又角BAC等于60度,所以三角形BEA是等边三角形,即BA=AB=BE。
因DF平行BA,所以叫FEA=角EAB=60度。
又AF等于CE,CE=AE=AB。所以三角形AEF是等边三角形,AF=FE=EA,
即AF=AB=BE=AE,故四边形ABEF是菱形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
30度对应的边是斜边的一半
所以 AC=AE
∠BAC=60°,所以ACE是等边三角形
AC=AE=CE=AF
四边形ACEF是菱形
所以 AC=AE
∠BAC=60°,所以ACE是等边三角形
AC=AE=CE=AF
四边形ACEF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Rt△ABC
∵DE垂直平分BC
∴三角形BDE相似三角形BCA
BD比BC=BE比BA=1:2
∴E为AB中点
∴CE=AC
∴平行四边形
故ACEF是菱形
∵DE垂直平分BC
∴三角形BDE相似三角形BCA
BD比BC=BE比BA=1:2
∴E为AB中点
∴CE=AC
∴平行四边形
故ACEF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-08-28
展开全部
``````````
追问
有病么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询