如图,在平行四边形ABCD中,对角线AC,BD相交于点O,EF过点O交AD于点E,交BC于点F,且AF垂直BC证AFCE为矩形
4个回答
展开全部
因为四边形ABCD是平行四边形,所以AD平行BC即AE平行CF,所以角EAC=角ACF,AO=CO,角AOE=角COF,所以三角形AOE全等于三角形COF,所以CF=AE,所以四边形AFCE是平行四边形(一条对边平行且相等的四边形是平行四变形)又因AF垂直BC,所以AFCE是矩形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
应该是这样【求证:四边形AFCE是矩形】
证明:
∵四边形ABCD是平行四边形
∴AD//BC
∴∠EAO=∠FCO,∠AEO=∠CFO
又∵AO=CO【平行四边形对角线互相平分】
∴⊿AEO≌⊿CFO(AAS)
∴AE=CF
∵AE//CF
∴四边形AFCE是平行四边形
∵AF⊥BC
∴四边形AFCE是矩形【有一个角是直角的平行四边形是矩形】
证明:
∵四边形ABCD是平行四边形
∴AD//BC
∴∠EAO=∠FCO,∠AEO=∠CFO
又∵AO=CO【平行四边形对角线互相平分】
∴⊿AEO≌⊿CFO(AAS)
∴AE=CF
∵AE//CF
∴四边形AFCE是平行四边形
∵AF⊥BC
∴四边形AFCE是矩形【有一个角是直角的平行四边形是矩形】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:
∵四边形ABCD是矩形
∴AD//BC
∴∠FAO=∠ECO,AO=CO
∵∠AOF=∠COE
∴△AOF≌△COE(ASA)
∴AF=CE
∴四边形AECF是平行四边形
∵EF⊥AC
∴四边形AECF是菱形
2:
设CE=x
则AE=CE=x,BE=BC-CE=4-x,
在直角三角形ABE里:AE²=AB²+BE²
x²=2²+(4-x)²
x²=4+16-8x+x²
8x=20
x=2.5
∴CE=2.5
S四边形AECF=CE×AB=2.5×2=5cm²
∵四边形ABCD是矩形
∴AD//BC
∴∠FAO=∠ECO,AO=CO
∵∠AOF=∠COE
∴△AOF≌△COE(ASA)
∴AF=CE
∴四边形AECF是平行四边形
∵EF⊥AC
∴四边形AECF是菱形
2:
设CE=x
则AE=CE=x,BE=BC-CE=4-x,
在直角三角形ABE里:AE²=AB²+BE²
x²=2²+(4-x)²
x²=4+16-8x+x²
8x=20
x=2.5
∴CE=2.5
S四边形AECF=CE×AB=2.5×2=5cm²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询