设A为m*n矩阵,并且R(A)=n,设B为n阶矩阵,证明:如果AB=0,则B=0.速求.
1个回答
展开全部
A为m*n矩阵,由R(A)=n可知A是列满秩矩丛悄雀阵,故渗早A必存在左逆,即存在矩阵C,CA=I,其中C是n*m阶矩阵,I是n阶单位阵,由AB=0,两边左乘C,CAB=C0,IB=0,即得题的结论B=0.
如果你没有左逆的知识,这里可以直接给出矩阵C,矩阵C=(A的转置*A)的逆*A的转置,但这里需要证明n阶矩阵(A的转置*A)是可逆矩阵,由R(A)=n或A是列满秩矩阵不难证明,下面给出证明,反证法,如果(A的转置*A)不是可逆矩阵,即是奇异的,则存在n阶非零向量,使得(A的转置*A)*x=0.x的转置*(A的转置*A)*x=0.
(Ax)的转置*(Ax)=0.从而得Ax=0.这与A是列满秩矩阵矛盾,故(A的转置*A)是可逆矩阵,下运裂面验证C=((A的转置*A)的逆*A的转置)是A的左逆,
CA=(A的转置*A)的逆*(A的转置*A)=I
如果你没有左逆的知识,这里可以直接给出矩阵C,矩阵C=(A的转置*A)的逆*A的转置,但这里需要证明n阶矩阵(A的转置*A)是可逆矩阵,由R(A)=n或A是列满秩矩阵不难证明,下面给出证明,反证法,如果(A的转置*A)不是可逆矩阵,即是奇异的,则存在n阶非零向量,使得(A的转置*A)*x=0.x的转置*(A的转置*A)*x=0.
(Ax)的转置*(Ax)=0.从而得Ax=0.这与A是列满秩矩阵矛盾,故(A的转置*A)是可逆矩阵,下运裂面验证C=((A的转置*A)的逆*A的转置)是A的左逆,
CA=(A的转置*A)的逆*(A的转置*A)=I
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询