如果有理数a,b满足ab-3的绝对值+(1-b)平方=0,试求1/ab+1/(a+2)(b+2)+1/ (a+4)(b+
展开全部
|ab-3|+(1-b)²=0,两个非负数的和等于0,这两个非负数都等于0
ab-3=0 且 1-b=0 ,解得 a=3 ,b=1
1/ab+1/(a+2)(b+2)+1/(a+4)(b+4)+……+1/(a+98)(b+98)
=1/(1×3) +1/(3×5) +1/(5×7)+……+1/(99×101)
=1/2×[2/(1×3)+2/(3×5)+2/(5×7)+……+2/(99×101) ]
=1/2×[(1-1/3) +(1/3-1/5) +(1/5-1/7)+……+(1/99-1/101) ]
=1/2×(1 -1/3 +1/3-1/5 +1/5-1/7+……+1/99-1/101)
=1/2×( 1 -1/101 )
=1/2×100/101
=50/101
ab-3=0 且 1-b=0 ,解得 a=3 ,b=1
1/ab+1/(a+2)(b+2)+1/(a+4)(b+4)+……+1/(a+98)(b+98)
=1/(1×3) +1/(3×5) +1/(5×7)+……+1/(99×101)
=1/2×[2/(1×3)+2/(3×5)+2/(5×7)+……+2/(99×101) ]
=1/2×[(1-1/3) +(1/3-1/5) +(1/5-1/7)+……+(1/99-1/101) ]
=1/2×(1 -1/3 +1/3-1/5 +1/5-1/7+……+1/99-1/101)
=1/2×( 1 -1/101 )
=1/2×100/101
=50/101
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询