初一数学知识点
初一数学知识点范文
在我们平凡无奇的学生时代,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。哪些知识点能够真正帮助到我们呢?下面是我为大家整理的初一数学知识点范文,希望对大家有所帮助。
初一数学知识点范文1
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
4、特殊位置的点的坐标的特点:
(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
5、点到轴及原点的距离
点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+)第二象限:(—,+)第三象限:(—,—)第四象限:(+,—)
x轴正方向:(+,0)x轴负方向:(—,0)y轴正方向:(0,+)y轴负方向:(0,—)
x轴上的点纵坐标为0,y轴横坐标为0。
初一数学知识点范文3
1、数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不
可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2、数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3、利用数轴表示两数大小
⑴在数轴上数的`大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4、数轴上特殊的(小)数
⑴最小的自然数是0,无的自然数;
⑵最小的正整数是1,无的正整数;
⑶的负整数是—1,无最小的负整数
5、a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a<0表示a是负数;反之,a是负数,则a<0
⑶a=0表示a是0;反之,a是0,,则a=0
初一数学知识点范文2
1、二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程、注意:一般说二元一次方程有无数个解。
2、二元一次方程组:两个二元一次方程联立在一起是二元一次方程组。
3、二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解、注意:一般说二元一次方程组只有解(即公共解)。
4、二元一次方程组的解法:
(1)代入消元法;(2)加减消元法;
(3)注意:判断如何解简单是关键。
※5、一次方程组的应用:
(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解。
(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;
(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系。
一元一次不等式(组)
1、不等式:用不等号,把两个代数式连接起来的式子叫不等式。
2、不等式的基本性质:
不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变。
3、不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集。
4、一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0)。
5、一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点。
广告 您可能关注的内容 |